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ABSTRACT

Horizontal Fault Tolerance in a Fully Distributed

Loosely Coupled Environment. (August 1990)

Peter Schiavi, B.S., Case Institute of Technology;

M.C.I.S, Cleveland State University

Chair of Advisory Committee: Dr. Udo W. Pooch

The increasing use of local area networks to divide up the process-

ing power on'ce allocated to a'single central processor has a side benefit

which allows for the implementation of levels of fault tolerance at minimal

cost. With a central processor, hardware replication is mandatory to con-

tinue processing in the face of hardware failures. Otherwise, processing

must generally halt for a period of hardware repair. A local area network

already contains replicated hardware, along with software to support com-

munications over links connecting the individual nodes.

' The existence of duplicated hardware, and independent processing

ability within each node, allows for a concentration on software support

for fault tolerance. Hardware replication can be limited to such areas as

network topologies which employ multiple links among the nodes.

This research concentrates on software approaches to fault toler-

ance in a (loosely coupled) network environment. Current approaches are

studied. These turn out to emphasize special purpose languages and

operating systems designed to allow for transparent distribution of tasks

amongst the nodes. The failure scenarios under which faults will be

masked varies widely.
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Specifically, this research develops a set of language and operating

system protocols to implement a level of fault tolerance. This Fault

Tolerant Monitor (FTM) system is layered above the operating system. ( - j
Cooperating applications which desire to avail themselves of the fault

tolerance services offered by the FTM system advertise themselves to it.

Other applications may simultaneously be executing on the network as if

the FTM system were not present.

The FTM system consists of an FTM module running on each node.

These communicate together. Applications are provided with an Intercept

Library which is linked into each executable. This defined procedure inter-

face isolates the applications from the FTM system protocols. Services

such as node-independent message delivery and restart/relocation of fail-

ing applications are offered.

An FTM system following the protocols is developed and imple-

mented under UNIX. It is utilized to generate performance statistics, and

performance is compared between applications which utilize the FTM ser-

vices, and those which bypass them.
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CHAPTER I

INTRODUCTION

1.1 Motivation

Historically, hardware fault tolerant computer systems have been

designed for specific applications and offered this fault tolerance through

massive hardware replication at costs far exceeding general purpose sys-

tems of equivalent computing power. The plunging cost of computer

hardware allows for economic inclusion of fault tolerance into general pur-

pose hardware systems. Since mean time between failure (MTBF) has

slways been a major hardware evaluation factor, it is understandable that

the level of fault tolerance included in even general purpose hardware has

been dramatically increasing.

The evolution of software fault tolerance has not been as dramatic.

There have been software based special purpose fault tolerant systems.

These generally rely on software to make switching decisions among repli-

cated hardware modules. A more recent trend is to take a system with

hardware components which are replicated for performance rather than

fault tolerance, such as multiprocessors and networks, and to layer upon

this hardware a software support system which allows application pro-

grams to access fault tolerance services.

This research will define a software environment in which applica-

tions will be able to access services to aid in recovery and continued opera-

tion in the face of software and hardware failures. The emphasis will be

The Communications of the Association for Computing Machinery is
used as a pattern for format and style.
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on layering these services on top of a general purpose operating system

running on a general purpose system. The aim is to allow applications to

make full use of all normally available system resource- -nd in addition

to have these fault tolerance services available.

The fault tolerant environment defined by this research will be gen-

eric in the sense that it will be independent of any specific hardware confi-

guration or operating system. It will be implemented on a general purpose

computer system neither designed specifically for, nor dedicated to, the

generated fault tolerant environment.

1.2 Approach

First, a literature survey provides past and current approaches to

fault tolerant environments. Next, initial decisions as to the general

approach must be made and justified. Minimal hardware requirements

are defined and protocols are developed to implement the software

environment. An existing local available system is chosen upon which a

prototype is then implemented.

The prototype system is then used as a platform to study the imple-

mented fault tolerant environment. A variety of tests are run under the

environment both to demonstrate the validity of the approach and the

generate performance statistics. The performance versus fault tolerance

(and convenience) trade-offs are considered and discussed.

1.3 Overview

Chapter II presents an extensive literature survey. In Chapter III,

the chosen approach is described, along with a discussion of the prototype

environment. The complete application user instructions, along with the
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code, is given in Appendix A. Chapter IV describes the user interface and

protocols for the fault tolerant environment. Chapter V presents the

results of validation and measurement tests run against the implemented

environment. Finally, Chapter VI presents conclusions and suggested

areas of further investigation and research.
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CHAPTER II

REVIEW OF LITERATURE

2.1 Introduction

The volume of literature that is available and relates to fault toler-

ance is so large that necessary sub category classifications and detailed

fault tolerance requirements are essential to restrict the literature survey.

Traditional computer systems typically demonstrate software, hardware,

and system failures that cannot totally be eliminated by after the fact

fault tolerant approaches. Rather, a reasonable choice of fault tolerance

features based on environment specific fault tolerance requirements,

would provide reliable computing. Various classifications of fault tolerance

attributes help in choosing attributes most likely to be beneficial in a

specific critical application.

2.1.1 Classifications

Rennels [68] provides an excellent overview to the history of fault

tolerant computing from the early 1960's. Besides providing high level

descriptions of numerous landmark fault tolerant systems, he classifies

several aspects of fault tolerance into clearly defined groups.

The most general classification of fault tolerance is by requirement.

Although the need for fault tolerance may be equally critical across vari-

ous computing environments, the specific recovery requirements may be

totally unrelated. Rennels divides requirements into three categories:

fault coverage, computational integrity, and time between maintenance.

Fault coverage is the determination of which types of faults have the

highest detection and recovery need (i.e.: which faults are "covered"). So,
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the system fault coverage against a specific fault is the probability that an

instance of this fault type will be detected and recovery action taken.

Fault coverage becomes most critical in such applications as nuclear reac-

tor safety systems or manned space vehicles, where incorrect outputs can

result in death or mass destraction. Computational integrity is the ability

to ensure that computed data is correct. This is most important in such

applications as financial systems. Sensor based systems can usually

recover from an absent or incorrect data point because the data is con-

stantly being updated and historical data is of lower importance. However,

an item of financial data is generally folded into a running total so its loss

or corruption causes problems which are not transient in nature. Time

between maintenance is self-explanatory. Its importance lies in the deter-

mination of how critical a period of down time would be. In the case of

non-repairable systems (e.g., remote systems such as space vehicles) this

category becomes the most important.

Rennels further subdivides fault causes into three classes: physical

faults, external errors caused by the environment, and design faults. The

most difficult to provide fault tolerance for are design faults. Note that all

software faults fit into this category. Validation of designs is very difficult

for all but the most basic of hardware modules and prohibitive for large

software systems. One approach to design fault tolerance is to compare

the output of several completely independently designed and built

modules.

Rennels again uses three categories to classify hardware redun-

dancy: triplication with voting, duplication with comparison, and standby

replacement. Hybrids of these categories also exist. Systems using each of

these approaches will be briefly described.



6

2.1.2 Survey Articles

Other survey articles including that by Avizienis [8] describe the

history of fault tolerant computing at the Jet Propulsion Laboratory and

at UCLA. These systems are generally designed for avionics and space

applications and include such early fault tolerant systems as the STAR

(self-testing and repairing) and UDS (unified data system). Serlin [73]

describes fault tolerant systems, designed for commercial applications,

such as the Tandem Non-Stop and Stratus. These systems emphasize

computational integrity.

2.1.3 Mathematical Classifications

A number of articles classify fault tolerance systems mathemati-

cally. These systems can be classified as variations of queueing models

[10, 29]. Availability can be described using Markov state models [30] and

reliability analysis models [62] can be used to aid in configuration deci-

sions. Siewiorek [78] reprints a variety of detailed descriptions of early

fault tolerant systems.

2.2 Hardware Fault Tolerance

This section presents an overview of hardware approaches to fault

tolerance. It must be noted that although these techniques can and have

been used for software implemented fault tolerance, they often have an

increased negative effect on system performance.

2.2.1 System Level Considerations

The difficulty of embedding fault tolerance into large, complex com-

puter systems [38, 47] shows the need to design fault tolerance into the

basic architecture [77] of the system, rather than to add these features as
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afterthoughts. Architectural considerations include: levels and arrange-

ments of component replication, component reliability prediction, physical

layout (to isolate sensitive components from mechanical, chemical, and

electrostatic discharge hazards), diagnostics, software restrictions for reli-

able programs, etc.

Another consideration, at the system level, is the determination of

optimal retry policies [48]. A dynamic retry policy will base the current

retry actions on knowledge about the current fault. Hardware data struc-

tures [58] can be designed to specifically cover faults using spare

hardware (such as extra memory cells).

The architecture should attempt to minimize correlated failures [33]

among system components. Markov modelling of system reliability

assumes single state transitions. That is, a second failure does not occur

until action has been completed on the first failure. The fact that allowing

simultaneous failures complicates the mathematical model of a system

would by itself be a poor reason to expend cost and effort in their

avoidance. But, simultaneous failures also complicate actual required

recovery paths far beyond those paths required to recover from consecu-

tive, non-simultaneous faults.

A system with duplicated hardware can often be modelled as a

series-parallel system. While an attempt at a fully accurate model of any

reasonable system would quickly become enormously complex, empirical

studies [56] have shown that many simplifying assumptions can be shown

to have little effect under reasonable probability distributions for failure

rates and repair delays. Availability characteristics can then be generated

from this series-parallel model.
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One approach that is used in the development of a fault secure

large system is to concentrate on the interfaces between subsystems. Stu-

dies [57] have shown that the design of subsystem interfaces can incor-

porate the concepts used in the well studied totally self-checking (TSC)

network model, namely all outputs follow an encoding scheme. Since an

error output would be unlikely to be a legal encoding, a checker should be

able to detect the error before it is propagated. Large systems are difficult

to model, so the injection of errors into actual systems [17] can be used to

aid in measuring the ability of the system to isolate and compensate for

such errors.

As the reliability of individual components increases, measuring

data from implemented systems becomes less feasible, and modeling [36]

increases. Models, especially Markov and semi-Markov models, are

needed to produce mathematical predictions on reliability levels.

2.2.2 Approaches Using Additional Hardware

Hardware redundancy can be described from several aspects. All of

the techniques are from the hardware viewpoint, although equally applica-

ble to software implementation, either alone or in concert with the

hardware. As always, efficiency, cost, and requirements for fault coverage

govern the optimal techniques and approaches to specific cases.

2.2.2.1 Dual Components

A dual system is an example of replication. This technique uses

duplicate copies of a hardware component, such as a CPU, a memory

module, a disk, etc., where there is a primary module and either a shadow

or a standby. In the case of a shadow system, the secondary module

immediately and transparently switches to become the primary mode to
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prevent system failure. The failure can either be indicated by the pri-

mary, or, in the case of inconsistent outputs processing can be halted to

allow each module to run a self-check. Replication can be generalized to

include, for example, four modules connected into two sets of two modules,

each set acting as above, with the adddition of a comparator. Standby

systems have obvious disadvantages in the delays needed to implement

checkpoint type restarts. Thus, these restarts may be infeasible for certain

applications. Their main use is in unattended systems (since wearout is

minimized) and systems with limited available power. Replacement poli-

cies in replicated systems have been exhaustively studied [11, 52] and

depend on the desired optimal fault coverage.

2.2.2.2 Triple Modular Redundancy

Triple modular redundancy (TMR) uses three copies of a module

(actually any odd number of modules may be used) with the outputs gated

to a voter circuit. The voter circuit is assumed to be much simpler than

the triplicated modules and therefore inherently more reliable. Comparis-

ons between the replication and the TMR approaches [87] show advan-

tages for each. The TMR approach, although guaranteed to detect and

mask any error in a single module (even if the module produces a worst-

case output) has a higher hardware duplication. After a disagreement has

occurred and the voter has logically disconnected one of the triplicated

modules, the problem becomes one of deciding which of the remaining two

modules to accept for any future disagreement. The addition of replication

techniques to the module circuits (like shadowing and self-checking abili-

ties) would allow further fault tolerance after the first failure. This sug-

gests a hybrid replication-redundancy system.
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The TMR technique can be generalized into majority voting in the

case of large numbers of voters. For example, in the case of a large distri-

buted network of processors agreement on certain issues, such as the

current time or the status of a possibly aberrant system, can be voted on

by the systems and the results broadcast. Majority agreement in the face

of a large voting population, possibly including aberrant voters, can be

shown [21] to reliably reach consensus in a short time even in cases of

surprisingly unreliable individual systems.

2.2.2.3 Watchdog Processors

Another hardware approach, that of the watchdog system [51], uses

a separate processor to monitor various messages between modules. This

is a generalization of the watchdog timer concept. Various techniques

have been studied to implement watchdog processors, which can be used

to monitor any combination of: memory access behavior, control flow, con-

trol signals, and reasonableness of results.

The watchdog processor itself must be reliable, which implies that it

is simpler than the system being checked. In addition, the ability of the

watchdog processor to detect abnormal conditions is based on the watch-

dog scenario and understanding of normal system behavior. Simple faults

can be detected by such factors as timeouts, with the cooperation of the

modules in the system. Reasonableness checks require an understanding

of the meaning of the exchanged data between modules. Signature data

attached to each data stream allows the watchdog processor to monitor

expected outputs from modules.

2.2.2.4 Design Diversity

Avizienis and Kelly [7] present a good survey of a technique called
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design diversity. The idea is to duplicate the functionality of a module,

but not the module itself. That is, several different teams independently

design and construct a module. Replication and/or redundancy techniques

are then employed with these independently produced modules. This tech-

nique will overcome a design fault, where the design of a module causes it

to incorrectly handle some particular input data. This assumes that each

of the modules was designed from the same system specification.

The most certain and effectual check upon errors which
arise in the process of computation, is to cause the same
computations to be made by separate and independent
computers; and this check is rendered still more decisive if
they make their computations by different methods.

Dionysius Lardner
"Babbage's Calculating Engine"
Edinburgh Review
July, 1834

2.2.3 Hardware Fault Tolerant Systems

Several examples of hardware fault tolerant systems will be

presented next. A hardware fault tolerant system is one in which the

hardware, rather than the software, is primarily responsible both for fault

detection and for directing the recovery efforts. The Intel 432 system

assigns almost total responsibility for fault tolerance to the hardware.

However, most hardware based fault tolerant systems detect faults at the

hardware level, but may involve some direction from software for recovery

procedures. Often the operating system attempts to isolate other software

from the hardware fault tolerance features [94] by directing the testing,

reconfiguration, or graceful degradation of the system in response to

detected faults. The software fault tolerance routines are therefore

designed primarily to exercise the hardware fault tolerance features.
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2.2.3.1 Chip Level Considerations

Possibly the earliest approach to fault tolerance in computer sys-

tems involved error detecting codes in I/O transfers from/to peripheral

devices. A simple lateral parity bit per byte could detect any single bit

error. The addition of a longitudinal parity frame allowed the detection of

any double bit error in a block of data. Typically, this information would

be made available to the software which would be responsible for

appropriate reporting or recovery. The next step was to apply this concept

to memory data transfers [14, 711. Simple parity checking quickly gave

way to Hamming error correcting codes (ECC), which can correct single bit

errors. Usually, each individual byte is Hamming protected. The addition

of a parity bit allows for the detection of all two bit errors within a byte.

This code (Hamming with a parity bit) can correct any single bit error and

detect any double bit error. It is known by its acronym SEC-DED, which

stands for single error correction - double error detection. This fault han-

dling is the total responsibility of the hardware, except possibly for a log-

ging procedure to allow the software to migrate data from a repetitive

memory bit failure.

Advances in VLSI technology migrated increasing levels of fault

tolerance onto each individual chip. Mathematical modeling methods can

be used for VLSI device reliability predictions [27] covering both struc-

tural and performance defects.

2.2.3.2 Intel 432

The Intel 432 (see Figure 1) is a system based on fault toierawice at

the chi:, level [40, 96]. Besides self-checking and correcting circuits built

into each chip, the architecture allows chip modules to check and comple-

ment each other at the hardware level with minimal software
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intervention. For example, if two CPU modules are present, the second

may act as an independent CPU or it may shadow the primary, using its

comparator circuit to signal any detected inconsistency. This is also imple-

mented with memory modules. Memory modules contain a standby bit

chip (each 32 bit word has 40 individual bits: the 32 data bits, 7 ECC bits,

and the standby bit) so that a hard memory error can be corrected by the

memory control unit, by simply assigning the standby bit chip to replace

the failed bit chip.

'Jr-- r- -1- 1- r- 1
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ST I" . .. 1-
I II I I
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Figure 1. Intel 432 [40]

The architecture supports a fully object-oriented programming

approach, with an operating system that can decide on the level of fault

tolerance, and if necessary assign duplicate modules (such as CPUs or

memory modules) to be either shadows or independent components. The

hardware can then manipulate the software objects as needed. The appli-

cation software is totally ignorant of the current configuration and the

operating system need only define the current configuration (along with

setting constants such as retry limits) leaving the fault detection and
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recovery to be a strictly hardware level operation.

While the Intel 432 is significant as an attempt to implement fault

tolerance almost totally at the hardware level, it should be noted that it

was not a commercial success. The minimal operating system and the

almost non-existent application software probably did not impress poten-

tial users any more than the fact that the only available language com-

piler was ADA.

2.2.3.3 Self-Testing and Repairing (STAR) Computer

The STAR computer (see Figure 2), designed at the Jet Propulsion

Laboratory (JPL), had the objective of adapting the system as the central

computer of a space eAploration craft [6]. The system design is based on

the requirements to perform reliably for a long period of time (several

years) in a remote location under severe space and power restrictions.

F MTAP R M - RwM 2 - RwMJ - ,WM4 - RwMS - RWM , -, "

• I m-0 bus (4)f

b 4'
COP LOP Map 10-IRP ROM

Control bus I3),
status lines,
switch lines

Figure 2. STAR [6]

Although static redundancy (such as triple modular redundancy)

provides immediate fault masking, the expense of higher power usage and

wear-out of all components motivated dynamic (standby) redundancy.
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Dynamic redundancy meets the power restrictions (only active processing

units are powered) and the inability to physically replace failed com-

ponents increases the importance of the wear-out factor. Keeping spares

unpowered delays these wear-out effects.

Other advantages of dynamic redundancy include the ability to

easily adjust the number of spares, the survival of the system until all

copies of a component have failed, the avoidance of synchronization com-

plications, and the isolation of unpowered spares from catastrophic

environment faults.

One potential problem with standby redundancy is that with only

one powered unit of a particular module type it becomes critical that

faults be detected either through self-checking or through the use of a

watchdog. STAR employs both of these.

if a data item or instruction is altered during storage, transmission,

or processing, the result is a word error. Data duplication provides the

greatest fault coverage for word errors, but at the unacceptable cost of

having double powered memory and processing units. STAR therefore

uses an arithmetic error-detecting code. Each 32 bit word has 28 data bits

and 4 check bits. All instructions and data items are 28 bits and all arith-

metic operations have 28 bit results encoded into 32 bit words.

A control error by contrast results from the incorrect execution of an

instruction. STAR employs a 4-wire status line for each unit to send

status messages. The system works on the concept of a ten unit (ten clock

ticks) cycle of operation, simplifying expected status message synchroniza-

tion.
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Because the execution of each instruction takes exactly ten steps

and synchronously creates status messages, the concept of a watchdog can

be readily employed. Called a Test and Repair Processor (TARP), this unit

is the heart of the STAR hardware fault tolerance. The TARP receives the

status messages from the other units (control processor, read/write and

read only memory modules, arithmetic and logic unit, I/O processor, etc.)

and uses them to monitor the system operation. It is the TARP that

detects an error and determines appropriate corrective action, such as to

power down a component and power up one of the standbys. While the

TARP is controlling the system, the system is said to be in recovery mode.

When recovery is complete and the TARP returns to a monitoring func-

tion, the system resumes standard mode.

In a TMR system, the voter, a critical point of failure, must be

much more reliable than its feeder modules. The TARP plays a similar

role in the STAR. However, the fact that it tests for and repairs faults in

all other modules means that it cannot be designed to be much simpler
and more reliable than the modules that it is monitoring. So, the TARP

cannot be treated in the same "one unit up" manner as other components.

In fact, there are three powered and two standby TARP modules, with a

voter testing the results.

Another capability besides self-checking of a standby redundancy

system must be the ability to roll back programs. While in some cases the

TARP may be able to have the processor retry an instruction, in many

cases the repair is much more involved. A memory failure, perhaps an

entire memory module, requires a program restart. All programs running

on STAR are therefbre expected to take advantage of the checkpoint facili-

ties, so that if needed the operating system can respond to a TARP
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interrupt and checkpoint restart the affected process.

Although the STAR was designed for fault tolerance from a

hardware approach, the system software provides a user interface (espe-

-ially important because of the requirement for programs to checkpoint

chemselves) along with high level decisions (acting on information from

the TARP) and restart and cold start procedures. The system software

designed subsequent to the hardware has as its main purpose the support

of the hardware fault tolerance features.

2.2.3.4 Fault Tolerant Multiprocessor (FTMP)

Like STAR, the FTMP system (see Figure 3) was designed as a crit-

ical avionics controller with no external repair capability during its mis-

sion [35]. However, the similarity of application ends here. The FTMP is

intended for use as a normal (i.e., earthbound) aircraft support system.

This relaxes some of the restraints placed on the STAR design, while

increasing other constraints.

Size, weight, and power restrictions are among the most critical

constraints on systems designed for space travel. While not totally absent,

these particular limitations pale in the comparitively less restrictive air-

craft environment. Unattended operation (including lack of repair during

operational use) is common to both environments. However, an aircraft

mission is on the order of 10 hours, after which repairs can be made,

exhaustive off line testing can be performed, and components can periodi-

cally be replaced.

Availability is a factor which is more critical in the aircraft environ-

ment than in space applications, especially unmanned space applications.

A highly maneuverable aircraft, such as a fighter plane, is often in
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positions where loss of control for a fraction of a second could be critical.

Given the divergent nature of the environment requirements for

space applications and aircraft applications, it is natural that the design

for the STAR and FTMP systems also diverge. The primary restrictions of

volume, weight, and power for the STAR have been supplanted by the

requirement for high availability of the FTMP.

FTMP is based on the TMR-hybrid approach to fault tolerance.

That is, components are clustered into triads, each consisting of three

identical modules with a voter. In addition, spares are available to replace

any member of any triad that has been declared in error. Assuming relia-

bility in the voters, fault coverage is complete against any single error. A

double error may possibly be catastrophic (such as two modules failing

within one triad), but only if the second occurs within the time needed to

assign a spare.

Because errors are masked by the TMR voting within each triad,

software restrictions are much reduced from the STAR approach. Check-

pointing and rollback are not required, although some reasonable software

support (such as system restart) should be allowed for recovery from

catastrophic failures. This greatly increases availability over the STAR

approach, where any non-recoverable error results in a program rollback.

This FTMP program rollback is relatively time consuming when compared

to the STAR hardware controlled reconfiguration with program continuity.

In addition, FTMP is a true multiprocessor. That is, there are mul-

tiple CPU triads and the operating system assigns processes to processors

according to priority and availability. So, even if spares become exhausted

the system can operate in a degraded mode with fewer processor triads. A
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similar concept applies to memory triads.

The physical organization of the FTMP is very complex. Each triad

can be composed of any three physical instances of the appropriate

module type. All components, including processors, memory modules, and

busses, can be arranged in triads. The complex circuitry needed to control

these triad configurations is in addition to that needed to control the

usual tightly coupled multiprocessor complications such as cache coher-

ence. To control the current hardware configuration, each processor,

memory, and 1/O control unit, includes a sub-module called a bus guar-

dian. Each guardian has the responsibility to control the status of its own

module; whether or not to apply power to the module; to select the correct

active attached bus; and perform self-test analysis (only if the module is

not currently part of an active triad).

Guardians can be biased toward the "safe" direction for each selec-

tion, and thus increase reliability even more. For example, the "default"

action can be power off and a disconnect from all busses. This can be

enhanced further by supplying multiple guardians for each module, with

required guardian agreement before changing the default action.

The guardian, the point of isolation for a module (the guardian

selects the active bus connection), becomes the critical point to isolate

failures. Guardians are therefore designed to be as independent as possi-

ble. Each receives power and timing references independently of all other

guardians. The bus isolation gates are critical in the protection of the phy-

sically attached busses. They, as well as the guardian circuits which

enable them, must be independent. Each guardian is physically isolated

from all other guardians and all modules.
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Reliable clocking is critical in any TMR system, since the voters

must receive synchronous inputs. Several approaches have been tried. The

first was a redundant clocking arrangement based on a majority logic

algorithm. Another uses four phase-lock oscillators, with clock receiver cir-

cuits in each user module. In either case, there are 5 clock busses with 4

active at any one time. Each guardian is responsible for controlling the

clock receiver circuit in its module.

Because the FTMP is a multiprocessor, on-line testing can occur

while critical processes continue to run. Software routines can cause

active processor triads to enter a test mode while other active processor

triads execute critical processes. While in a test mode, a triad can test its

voter circuit by purposely providing distinct outputs from the voted

modules. Although bus triads can be tested in i similar fashion, memory

triads cannot be tested on-line.

It should be noted that engineering prototypes of the FTMP have

been constructed that employ some, but not all, of the above redundancy

principles. For example, one such prototype from the Charles Stark

Draper Laboratory employs the concept of a line replaceable unit (LRU).

Each LRU consists of o:1e processor with cache, one memory module, one

I/O port, one clock generator, and related control and peripheral circuitry.

The prototype consists of 10 LRUs. This allows for three processor triads,

with the tenth processor as a spare. The three memory triads (again with

one spare) allow for 48K (3 * 16K) of shared memory. Each LRU contains

a common power supply for its contained modules. The components

within each LRU are logically independent, but not physically. The

reduced reliability, from the physical dependance, is accepted because of

the resulting simplified physical implementation.
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2.3 Software Fault Tolerance

Software fault tolerance refers to the masking of or recovery from

faults in software. The use of software to aid in the tolerance of hardware

faults is a distinct subject. As has been previously noted, all software

faults are design faults. Many te±chniques of hardware fault tolerance are

therefore inappropriate to software approaches. For example, wear-out is

not a factor. Replicated copies of a software package are useless against a

software fault. On the other hand, approaches to tolerance of hardware

design faults can be easily transformed into equivalent approaches to

software fault tolerance.

2.3.1 Software Approaches

The best way to provide tolerance from design faults in hardware is

to avoid them. That is, design the hardware correctly to begin with. It is

the increasing complexity of the hardware that makes this goal difficult to

reach. Despite the fact that a given hardware design is likely to result in

the production of a large number of physical vnits of that design, it is still

prohibitive in cost (dollars and time) to assure design correctness beyond a

certain point. A typical software package can be many orders of magni-

tudes more complex, and correspondingly more difficult to prove correct.

For this reason, the historical approaches [75] to software reliability have

assumed bugs in the software and described software reliability in terms

of probabilities, such as: Software reliability is the probability that a given

software system operates for some time period without software error, on

the machine for which it was designed, given that it is used within design

limits.

The robustness of a program is defined as its ability to perform

according to its design over the range of legal input. Any input will be
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considered l egal, with erroneous input resulting in a detected exception.

Preventing robustness failures in a software system is the goal of software

fault tolerance. Everhart [24] divides robustness failures into 24

categories, along with approaches to handling each failure category.

Software fault tolerance initially involved hardware features

[41, 61] to isolate software modules by restricting hardware privileges.

Memory keys (and later virtual address translation tables) were used to

restrict which memory locations could be accessed by various software

tasks, and hierarchical prote.tian levels restrict tasks from performing

sensitive processor operations. he idea is to restrict critical operations to

well designed and tested software (such as the supplied operating system)

while less trusted programs would have to use defin6d interfaces request-

ing critical actions to ba performed on their behalf.

As Lardner's quote from "Br" ibage's Calculating E, ine" stated,

design diversity to design fault tolerance is appropriate both in hardware

and software. It is in general much easier to have several independently

designed and coded software modules than to have several independently

designed and manufactured hardware components. Furthermore, these

software modules can be run independently on one processor or in parallel

on several different systems, with subsequent voting and comparisons.

Randell [64] formalizes the concept of software design diversity

through a mechanism called a recovery block. This is a conventional block

of code, requiring only that explicit points of entry and exit be defined,

wbich is supplemented by several constructs. An acceptance test provides

a means of error detection. And, one or more alternative blocks are

included. Any time the recovery block is executed, the acceptance test is

performed prior to exit. A failure results in an invocation of the first



24

alternative block. The acceptance test is repeated before this block is

exited. Another failure results in an invocation of the second alternative

block. This sequence continues until the final alternative block defined for

this recovery block has been invoked. An acceptance test failure at this

point is reported as an unrecoverable error from the recovery block.

Data diversity [3], a design diversity derivative, decomposes the

input data such that each component is independently used by the

software system, recombining the results and comparing this result with

the original composite input. The feasibility of this approach depends on

the function of the software module. For example, consider the following

calculation:

y = sin (x)

Since:

sin (a +b) = sin (a )cos (b ) + cos (a )sin (b)

cos(a)= sin(- a

select any {a,b I x = a+b) and calculate:

Y2 = sin (a)sin( -b) + sin (--a)sin(b.2 2

It is now possible to compare calculated values for y and y2. Since the sin

routine had been tested over a wide range of input values and the proba-

bility of a design fault for any particular input is low (p <<1), then the pro-

bability of having offsetting errors is yet even lower (on the order of p 2).

2.3.2 Software Fault Tolerant Systems

In this section several systems designed for software based fault
..n" l n" .... I

hardware fault tolerant systems, the hardware and software are designed

to complement each other and both contain features specifically meant to
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provide fault tolerance. The difference is in emphasis only; the following

systems place most of the responsibility to detect faults, and especially to

recover from them, in the software.

2.3.2.1 PLURIBUS

The PLURIBUS multiprocessor system (see Figure 4) was designed

specifically as a second generation replacement for the ARPANET inter-

face message processor (IMP) [42, 59]. The purpose of the IMPs, acting as

a message routing system, provide the network backbone. Once a message

was received from a sender, the IMP became responsible for routing it to

the next IMP in the chain until it reached the IMP from which it could be

delivered to the receiving node. Fault tolerance for the IMP system was

basically limited to the presence of multiple paths between IMPs. Of

course, any messages held by an IMP were lost during IMP failure, and, if

the IMP connected to the sender or receiver failed, then the path was con-

sidered disconnected pending IMP repair.

The overriding constraint on PLURIBUS, being a message routing

system, was availability. Thus, a reasonably infrequent loss of data could

be tolerated, since upper level protocols at the sender and receiver are

responsible for assuring reliable message delivery. The systems would be

located at large sites where MTTR could be minimized, operating in a

degraded mode, while awaiting repair (rather than being down com-

pletely).

PLURIBUS, a single purpose computer, emphasized duplicated

hardware with coordination by software where the system software and

application software were designed as a unit. And, since the system appli-

cation emphasized 1/0 (message receives and sends), free CPU cycles were
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Figure 4. PLURIBUS [42]

available to handle fault tolerance overhead.

Each PLURIBUS system contains multiple identical processors. In

each PLURIBUS system the ideal number of processors is the number

necessary to handle the expected load, plus one. Thus, the failure of any
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single processor results only in the loss of excess throughput capacity.

These processors are tightly coupled, sharing memory and all other sys-

tem resources. System components are independent in terms of environ-

mental factors such as power and cooling. The interconnection between

modules is a distributed form of a crosspoint switch. A maximum of eight

processors and eight memory modules are allowed.

All modules are activated either at power up or reset time. Each

processor loads its local memory from an external source, and then

attempts to communicate with the other processors. After system con-

sensus is reached, the system software loads applications into main

memory and creates data structures. Each of the identical processors then

becomes eligible to run any task. All interprocessor communication is per-

formed in a section of main memory called the communication page.

Hardware fault tolerance is limited to parity checking between modules

and timer interrupts to indicate lack of expected responses.

The coordination of processors is accomplished through the logical

system configuration, a data structure in the communication page. All

changes to the logical system configuration must result from a consensus

of the processors. The approach is not to immediately detect a fault, but

rather for each processor to periodically check to see if its view of the

current system matches the current logical system configuration. If not, a

request (through the communication page) is made to force a consensus on

the potential discrepancy. Any processor not agreeing with the consensus

must terminate its place in the system. Errant processors are designed to
qit rather than continue to destrutvl wihxe"eann

operational part of the PLURIBUS system, and thus Byzantine behavior

need not be logged.
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The software of each processor, utilizing a sequence of ten initializa-

tion stages, performs self diagnosis and system checking before the proces-

sor is allowed to join the active system. Each successive stage builds on

the self-tests performed at the earlier stages. During processing, the

checks associated with each of the stages are periodically retried. Any

discrepency results in complete reinitialization of the system before the

final stage (the application system) may be entered.

Coordination among processors is by way of a common communica-

tion page in memory. The first step is for the processors to agree on a

page. Since memory is not replicated, the loss of a memory module results

in the loss of a specific part of the address space. Thus, processors may

be unable to access certain memory pages. The agreement on a communi-

cation page is a critical operation because processors, expected to coordi-

nate their own non-interference with other processors, would immediately

encounter critical interference in the presence of duplicate communication

pages.

Each page in memory contains a small area reserved for communi-

cations data, including a pointer to the communications page. The idea is

that a processor expects the communication page to be the lowest accessi-

ble numbered page. If the pointer in that page points to itself, it identi-'

fies the communication page. If the pointer is to a higher numbered page,

then the processor defines its low page as the communication page and

fixes all the pointers in the pages it can access. If the pointer is to a lower

page, then the processor must determine why it camot see that lower

numbered page. It may be that a hardware failure has made that page

inaccessible (but accessible to other processors) which means that the pro-

cessor must shut itself down for repair. Or, it may be that the memory
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module is bad, the page is not accessible to any processor, and this is sim-

ply the first processor to notice this condition. In this case the processor

should increment all pointers to point to the new (higher) low numbered

page. Since there is currently no coordination between processors, a

mechanism must be used to determine whether the processor shuts down

or defines the higher numbered communication page. The mechanism is

as follows: all processors with a successfully defined communication page

periodically zero a timer in the communication area of all pages. So, the

processor that is deciding whether to define a higher numbered communi-

cation page must check the timer on that page. If the timer does get

zeroed within a given period of time, some other processor is successfully

using both that page and the indicated lower numbered communication

page, which means our processor must stop itself rather than attempt to

change the communication page.

This complicated procedure to select a communication page has

high continuing overhead, and furthermore allows a worst case scenario

where the processors can be partitioned into multiple classes, each with

their own communication page. This scenario in which all of memory is

partitioned so that there is no memory interference between processor

groups, does result in system failure because of I/O bus interference. This

is an example of Byzantine failure which the PLURIBUS design is not

able to handle.

Two general techniques are used to ensure data integrity in the

PLURIBUS system. The first, and standard, approach is redundant infor-

mation. Sgmnficant system control data structures are duplicated and

periodically compared. Detected differences result in attempts to correct

the situation, with early detection minimizing the spread of the fault.
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The second general technique is the use of watchdog timers. Timer

resets are used to aid in the determination of a common communication

page, and also to manage data structures. In a message handling system,

such as PLURIBUS, buffer pool management is critical. This is especially

true since the loss of a message is not considered a critical failure as long

as the system continues operation. Problems with the buffer pool would

represent significant degradation. Flags are set on message buffers to

indicate their appearance on the free list. Any buffer which has not

appeared on the free list for more than two minutes is considered "stuck"

and is forced onto the free list despite the possible loss of any message

data.

PLURIBUS seems to show that software implemented fault toler-

ance compares poorly to the previous examples of hardware based fault

tolerance. PLURIBUS has complicated software coordination mechanisms,

devotes a communication area on every page (along with periodic associ-

ated timer updates on every page) simply to assure further processor coor-

dination, counts on each processor to check itself and refrain from Byzan-

tine behavior, expects each processor to periodically retry its multiple

stage self-checks, etc. Data integrity is not even a design goal; communica-

tions software on other computer systems have the responsibility to check

for missing or garbled messages.

One very significant advantage of the PLURIBUS approach is cost.

Most of its hardware is standard off-the-shelf. Only the distributed

crosspoint switch is not generic. Additional modules (processors, memory)

a___ be added writh little additional har'dware complications. Fa.U.lt toler.

ance features may be tested and evaluated in software at minimal cost.

Revised software version can be distributed much more easily than a set
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of hardware field changes.

Another advantage is error reporting. While hardware fault detec-

tion and correction usually results in some logging information, software

error handling provides detailed records. Ttis more complete error report-

ing can be used to better understand the nature and frequency of various

faults that occur during operation.

2.3.2.2 Software Implemented Fault Tolerance (SIFT)

SIFT (see Figure 5), closely matching the FTMP hardware based

fault tolerance system, is intended for use as an avionics control system

with requirements for ultra-high availability over a relatively short period

of time (on the order of ten hours) [931. Unlike FTMP, however, SIFT

places the fault tolerance responsibilities mainly at the software level.

Similar to the PLURIBUS software directed fault tolerance system,

SIFT can depend on mostly off-the-shelf hardware. SIFT, because of dif-

ferent design and operational requirements, can tolerate neither downtime

nor repairs during system usage. In fact, the system restart and reconfi-

guration allowed in PLURIBUS is not acceptible in SIFT. The fault toler-

ance emphasis in SIFT is therefore software level TMR.

SIFT contains up to eight independent processor units, with each

processor unit containing its own local memory; there is no global

memory. A fault in either processor or memory results in the designation

of the entire unit as faulty. Ea-h processor may read the memory of any

of the processor units, but may write only to its own memory. Processor X

can therefore not maliciously interfere with any other processor. Each

processor's code is protected in its local memory and data may be checked

as received. Like PLURIBUS, specially designed hardware is limited to
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the bus system and interfaces between the busses and modules.

Bus
controller

Buses

Processor Memory

Main processing
modules

Processor MemoryTI I pocssn
modules

To/from
actuators
sensors

Figure 5. SIFT [93]

All software is designed as a sequence of iterations. Each iteration

receives input from the previous iteration, and leaves any output in a

memory buffer to be read by the following iteration. A particular software

iteration will be simultaneously run on at least three processor units. So,

when an iteration begins and reads its input data, it will read the data

from buffers in at least three local memories where the implementations

of the previous iteration were run. The iteration then votes on the input

data; a difference results in leaving any error information in a buffer so
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that a global executive can be informed of any suspected fault.

At this point, comparisons between FTMP and SIFT show both

striking similarities and differences. FTMP also utilized TMR to mask sin-

gle faults without need for program rollbacks. Spares can in both cases be

assigned to replace failed modules. Prioritizing critical functions allows

the system to remain operational despite degradation below full

throughput capacity. A detected fault results in the removal of a module

from the active system. Once removed, a module is considered failed for

the remainder of the mission. Beyond these, characteristics diverge.

FTMP handles faults with little time overhead. With SIFT, the software

overhead to detect and recover from faults is continuous and must be

included in calculating minimal required system throughput. Given that

throughput is adequate, the SIFT approach demonstrates many advan-

tages.

FTMP's hardware TMR approach meant that hardware modules

must operate in lock-step, which requires fault tolerant clocking circuits.

SIFT only requires that output from the triplicated iterations be available

within some reasonable selected time window (such as 50 p). Clock syn-

chronization between processor modules is not nearly as critical. The pro-

cessor units on SIFT do not have to be divided into threes with unused

standbys. All SIFT processor modules may be active simultaneously, and

each triplicated iteration may be executing on any combination of three.

A standby processor module for a particular iteration must simply contain

a copy of the iteration code in local memory so that it can quickly replace

a failing processor module. The global executive, responsible for system

configuration decisions, just like any other application software runs as

triplicated iterations. The local executive at each processor module is
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responsible for communication with the global executive. Communication

can take place only by a processor reading the memory of another proces-

sor unit.

The advantages of software (easier version updates, improved error

reporting, etc.) vs. hardware fault tolerance also applies to the SIFT vs.

FTMP comparison. Significant software overhead and proof of correctness

remain the foremost disadvantages.

It must be noted that in both PLURIBUS and SIFT the application

software is special purpose. That is, the hardware configuration and sys-

tem software are both designed to support a specific application, and, the

application software is written to support a specific system architecture. It

is easy to see that software fault tolerance as exemplified by these two

systems ignores the difficulties involved in fault tolerance for systems

designed to handle general purpose software. Thus one initial conclusion

is that as the applications become less focussed, the fault tolerance

becomes more difficult to implement in software and must necessarily

migrate down into the hardware level.

2.3.2.3 UNIX RTR

UNIX RTR, unlike all of the hardware and software fault tolerant

systems described so far, is a standard software system (UNIX) version.

UNIX RTR is the operating system delivered with the AT&T 3B20 Duplex

computer (3B20D). This system (see Figure 6) is designed for applications

requiring ultra-high availability, both for communications switching sys-

tems and for general transaction processing systems [92, 96].

The 3B20D is a fully duplicated system. Each half of the system

consists of a processor with local memory, attached disk controller, and
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I/O processor. Each processor can access directly both its own disk con-

troller and I/O processor and also the disk controller and I/O processor of

its twin. One processor is active while the other is in standby mode. Each

write by the active processor to its memory is also routed through the

memory update controller of the standby processor, so that the contents of

the two memories are identically maintained.

MAIN STORE JMAIN STORE

16M BYTES J 16M BYTES

PROCESSOR PROCESSOR
SYSTEM USER U UER STE
MICRO. MICRO. O MEMORY MICRO . MICRO.
STORE S7TOE UPDATE UPDATE MCO

ORE RE STORE

CONTROL UNIT CONTROL UNIT

CACHE , MA DMA - CACHE

CONTROLLER CONTROLLER

~PROCESSOR , ,, PRINTER PROCESSOR

] SYSTEM

Figure 6. AT&T 3B20 Duplex Computer [921

A detected fault in the active processor can be immediately masked

by the standby processor by taking over as the new active processor. Disk
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mirroring is a standard software feature; when activated for a given disk

drive the output data is also sent to the backup disk drive, which is con-

nected to the other processor's disk controller.

The philosophy behind the 3B20D is to provide ultra-high availabil-

ity through the masking of any single fault (and some multiple faults)

without any parallel duplicate processing. All decision making, including

attempted recovery actions, is centralized in the active processor. Once a

recovery level decision has been made, the device drivers are expected to

be able to respond independently, in effect performing a distributed

recovery. This allows peripherals to be added to the system as long as

appropriate device drivers are provided.

Because the active processor is totally in control of the system (no

TMR, shadow processor, or watchdog processor), the active processor must

perform as much internal checking on itself as is practical. In addition,

an on-line configuration database is maintained. This provides a descrip-

tion of hardware units, including both information essential to reconfi-

guration and also associated error counts and thresholds. Besides the

normal hardware self-checks, UNIX RTR periodically performs a variety of

software tests to check for reasonableness among system data structures.

Allowing the standby processor to take o rer (with its mirrored memory) is

appropriate only in response to certain faults. In the case of a corrupted

system data structure, whichever processor is or becomes active must

effect a recovery with minimal down time.

In order to minimize down time, UNIX RTR uses a progressive

recovery scheme. Recovery levels are attempted in order of increasing

expected down time. A local recovery (hardware switch or system data

structure reconstruction) requires essentially no down time and will
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always be first attempted. Next, a quick bootstrap may be necessary. If

any current applications have called system routines that may not have

completed correctly they must be so informed. Therefore, critical applica-

tions should include signal handling routines. A complete bootstrap, with

the reloading of additional system software and the initialization of addi-

tional system data structures, would be the final recovery action that

UNIX RTR would automatically perform. A complete reload, including

memory clearing, requires manual operator intervention.

The UNIX RTR system integrity software periodically checks all

major software systems. It monitors the operator interface, file system,

maintenance control, software updates, and the system integrity software

itself. In addition, interfaces are provided that allow application software

to check itself, using the facilities of the system integrity software.

UNIX RTR provides extensive audits of hardware and software per-

formance. Parameters describing relative criticality of applications are

used for load balancing and handling system overload conditions.

Allowance is made for updates to application software, operating system

software, and hardware, all without requiring a system shutdown.

2.3.2.4 MACH

MACH [44, 53, 69] is another -'ariety of UNIX with extensions.

Unlike UNIX RTR, however, MACH runs on shared memory multiprocess-

ing systems. It provides for multi-threading within a task's address space

and can distribute threads amongst the available processors.

MACH is not UNIX. Rather, it has a completely rewritten kernel

which re-establishes the original focus of UNIX on as basic a kernel as

possible, containing only the most essential functions. However, MACH is
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binary compatible with UNIX executable files. This is to allow for an easy

upgrade path from standard UNIX environments to MACH. While support

for multiproccessor systems and multi-threading within an address space

are the most obvious distinctions of MACH over standard UNIX, in fact

the rewritten kernel makes use of the current state of virtual memory sys-

tems [85] to increase efficiency and resilience also in single processor sys-

tems and networks.

MACH adds five abstractions to the UNIX environment [861: task,

thread, port, message, and memory object. These replace and/or extend

standard UNIX concepts and are invisible to the UNIX programmer who

chooses to ignore them.

A MACH task is roughly equivalent to an address space. A thread

is a string of control; it can be thought of as a program counter and regis-

ter set. In this context, a standard UNIX process would be a task with a

single thread. Multiple threads require the existence of mutual exclusion

primitives available both to the kernel and to application tasks. These

same types of primitives are those required for multiprocessor scheduling.

On a multiprocessor, separate threads within a single task may execute

simultaneously on different processors.

The concept of a hardware communication port is generalized in

UNIX to include logical ports which serve as interprocess communication

end points. In MACH, ports are generalized further and assume an even

greater role. Applications use ports to communicate with server tasks and

also with objects managed by the kernel. Ports can move from object to

object. Multiple threads may read from a port, but these threads must all

be within the same task. Multiple tasks may write to a port. Special ports

exist for certain specialized communications purposes. Notable among
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these are the task exception port and the thread exception port. Excep-

tions are MACH extensions to the standard UNIX signal facility and will

be covered separately.

The standard concept of a message has also been extended in

MACH. Unlike UNIX, MACH messages contain user accessible headers

in addition to the stream of bytes comprising the message body. Simple

messages do not contain references to other ports; non-simple messages

implement indirect port accessing. Messages in MACH are the primary

way in which tasks communicate with each other and with the kernel. A

message may be as large as the entire address space of the sending task.

The kernel uses copy-on-write address translation to efficiently transmit

the message by simply adjusting the receiver's address translation tables.

Messages which are sent over networks between computers are handled

transparently to the user, although in this case the entire message must

be physically transmitted, so the efficiency of copy-on-write is not avail-

able.

The UNIX memory management concept is very basic - a fork sys-

tem call results in the creation of a new address space. That's it; sharing

memory between processes requires the processes to explicitly make

shared memory request calls and manage memory contention problems on

their own. MACH supports its inherent multi-threading and multiprocess-

ing features through the creation and manipulation of memory objects.

This concept allows each task to manage its memory on as low a level as

it wants. For example, when forking a child task, the parent may specify
w-U -fat of the -A -.. opae to cpy to tke I-h1 1' adrsslpaceS.S Th

remainder of the data in the parent address space is unavailable to the

child. To implement copy-on-write for messages, the message becomes a
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memory object in the receiver address space. Since threads share an

address space, a task can create threads with much less overhead than

forking separate tasks. And, it can still protect itself by restricting the

created threads to certain memory objects while protecting the remainder

of the task address space.

The significant improvement to memory management in MACH

over UNIX is to provide a safer environment for application tasks.

Another MACH feature central to the implementation of software fault

tolerance is the exception handling facility [13]. In UNIX, application

processes are notified of the existence of exceptions through signals. The

kernel finds the exception and sets a bit in a 32 bit exception flag word

associated with the process. As the scheduler selects the affected process

to run next, it notices the flag and instead of restarting the process at its

last execution point, it restarts the process it at the appropriate signal

handler address. This signal handler executes in the task's address space.

So, the signal handler has access to the data in the address space, but not

to the saved context (which includes the registers and the program

counter). And, since UNIX does not support multi-threading within an

address space, the signal handler is severely restricted as to the actions it

may take on the shared data structures. Basically, excessive effort must

be taken to avoid access to critical regions by a signal handler routine

since no convenient mechanisms exist that the task can use to lock the

critical regions.

MACH exception handling takes advantage of the multi-threading

feature. The exception handler is executed as a thread in fhe same task as

the victim. Here the term victim refers to the task or thread to which the

exception is sent. Victim context information is made available to the
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exception handler thread. The handler thread has access to the victim's

memory and the handler may either abort the victim or allow it to restart.

If the handler has decided to allow the victim to restart, it may first send

it messages through the victim's exception port. Signals are supported in

MACH and may be used instead of or along with exception handlers.

Monitors and debuggers also take advantage of MACH extensions

[49]. Under UNIX, a debugger must run as a parent process of the pro-

cess being debugged. Otherwise, it could not be aware of signals to the

debugged process. Once a process is running there is no way to attach a

debugger to it; the debugger must have been running first so it could fork

the debugged process. Under MACH the debugger can simply "take over"

the exception ports from the debugged task and receive the exceptions and

signals itself. These are subsequently passed on to the debugged task

through a substitute exception port. So, the debugger has intercepted sig-

nals and exceptions to the debugged task. This allows the debugger to

attach to and detach from the debugged process at will.

The IBM EPEX programming environment is designed to support

multiprocessing application programs written in assembler, FORTRAN,

and C. Originally written to run under IBM's VM/CMS control program,

EPEX could not be ported to UNIX due to the lack of multi-threading

within an address space and the difficulty of using shared memory. So,

IBM has ported EPEX to run under MACH [15]. This programming sys-

tem is called MACH/EPEX.

2.4 Distributed Systems

The next important type of system configurations is loosely coupled

systems, which are logically and physically separated from each other
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except for communication links. The idea is that each system is indepen-

dently capable of stand-alone operations. The loose coupling adds the abil-

ity to distribute workload and/or data amongst the systems (which will be

called nodes). The presence of duplicated systems, with intercommunica-

tion facilities, implies that this configuration can be adapted to fault toler-

ance.

2.4.1 Distributed Software

Reliability is but one of many issues considered during the design of

distributed system software [83]. Other critical issues include task

scheduling, decentralized control, protection and security, distributed file

systems, etc.

One of the initial, yet important, uses for coordinated processing

over a distributed system was for distributed databases. This increased

efficiency as data could be maintained at the system where it was most

likely to be accessed, while still available at other connected systems

albeit with some access delay. Data did not have to be duplicated but

could be accessed in sub-second intervals, adequate enough for query sys-

tems. The lack of duplicated data alleviated the inherent data consistency

problem.

The data consistency problem does not disappear, just because

there is no duplicated data. Anytime non-serial action is tak.3n on data,

whether in a loosely coupled system, a tightly coupled multiprocessor sys-

tem, or even multi-tasking in a single system, the possibility of incon-

sistent data is present. Atomic actions and locking mechanisms common

to multi-tasking systems must be generalized to the loosely coupled

environment.
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A network operating system (NOS) consists of communication rou-

tines to send messages between nodes [82], routines to handle file serving,

distributed task scheduling, reconfiguration around node failures, etc. An

operating system designed to manage the resources of a distributed com-

puter system (DCS) in a global manner is called a distributed operating

system (DOS).

The DCS software must account for the serialization of resources

over a loosely coupled network [95]. Most approaches define certain

resources whose access is limited to defined atomic actions. These

resources can then be employed as locks in much the same way as

resources are accessed by atomic read/write instructions within single pro-

cessor and tightly coupled multiprocessor systems.

The loosely coupled network is further complicated by delays in

receiving messages and increased likelihood of incorrect or missing mes-

sages, possibly due to node and link failures. Reliability requirements of

distributed programs can be divided into two cases [76]:

(i) The program will not abort despite the loss of a finite

number of messages.

(ii) The program will not abort despite the loss of a finite

number of messages and of node failures.

Programs designed for operation in a distributed environment must

emphasize resistance from aborts (or incorrect actions) to a far greater

extent than programs designed for operation in a uniprocessor environ-

ment or tightly coupled system.

Assuring reliability using relatively unreliable communications in a

distributed system encompasses a wide variety of issues. Recall the diffi-

culties with processor agreement in the tightly coupled PLURIBUS
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system. A generalization of these coordination protocols to a loosely cou-

pled distributed computer system [59] illustrates the complexities. The

development of algorithms which continue with correct operation during

node failures, while simultaneouly minimizing performance degradations

using unreliable communications, is an especially critical problem.

Fault tolerance in a distributed computer system at the operating

system level generally emphasizes reconfiguration. One level requires that

server processes be independent of the physical machine on which they

are running. That is, instead of directly communicating with a server, a

client may communicate with a directory service which dynamically for-

wards messages between the client and the server machine [32]. On a

second level, the operating system is responsible for the decisions concern-

ing the server (and client) reconfigurations. Generally this limits the

applications to a special purpose system. The generalization of this key

concept is essential to the FTM system, described in this dissertation.

2.4.2 Backup, Checkpoint, Recovery

Synchronization in a loosely coupled system is especially critical to

ensure consistency for backup and checkpoint data. A detected error can

prompt a checkpoint rollback in one or more of the nodes. In this case the

state of the distributed system, after the rollback, must take into account

the status of outstanding messages. If a message was sent from processor

A to processor B and after rollback processor B has recovered to a point in

time before the message was received, then processor A must also be

rolled back to a point in time before it had sent the message, or at least to

before it received an acknowledgement. The challenge is to assure con-

sistency with less overhead than by taking a checkpoint with each mes-

sage.
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Kohler [45] surveys techniques designed to allow synchronized

access to shared objects with a high degree of concurrency. The generali-

zation of the concept of an atomic action to that of an atomic transaction

is used as a basis for a serializable transaction schedule. Kohler contrasts

five distinct concurrency control methods: locking, timestamps, circulating

permits, conflict analysis, and reservation lists.

Locking an object is an extension to locking a resource in any

multi-tasking system. A transaction locks an object after waiting for the

object if it is already locked by another transaction. Before the transaction

completes, it unlocks the object. Since transactions require many locks,

tradeoffs between efficiency and deadlock prevention must be considered.

This is especially critical on a distributed system because of the relatively

slow communications times, and lost "unlock" messages (missing messages

or node failures).

Timestamps (usually some function of a local clock) are assigned to

transactions from a node in a monotonically increasing sequence. The

node-timestamp identification on each message is used by the concurrency

controller at the receiving node to synchronize access to objects. Protocols

such as WAIT-DIE or WOUND-DIE govern the actions taken by the con-

currency controller based on the relative timestamps of requesting tran-

sactions.

Circulating permits or control tokens are used to implement the

token ring network. In this scheme a node must "own" the appropriate cir-

culating permit before it may initiate a transaction. The circulating permit

travels around the network, dropping off its message and receiving

responses, until it is released by the original requestor. This scheme has

many drawbacks. Besides the time wasted waiting for the appropriate



46

concurrency permit to arrive, the level of parallelism is decreased by the

need to initially partition the data xad preassign a concurrency permit to

each partition. These partitions will in general have low granularity.

Thus, there is the need to check for lost concurrency permits resulting

from communication errors or node failures.

Conflict analysis is used to minimize synchronization overhead by

pre-classifying the likelihood of interference between different types of

transactions. The amount of locking is based on these likelihoods. This

means that transaction rollback must be performed in those cases where

insufficient locking has occurred. If this rollback occurs infrequently the

average transaction delay is minimized and a higher degree of transaction

parallelism is achieved. This scheme works only where transaction effects

are well known, such as in a distributed database system. In more general

systems the likelihood of interference cannot be sufficiently pre-classified

to keep rollbacks to a minimum.

Finally, reservation lists are an attempt to combine several of the

above described techniques. In this scheme each transaction must choose

one of two available protocols. In one protocol, the transaction is

guaranteed exclusive access to an object, but must wait until the object is

available. The second protocol allows shared access for transactions. In

this case the delay is likely to be shorter, but the transaction must be wil-

ling to restart, if necessary.

The maintenance of replicated data [34, 43], whether designed as a

current remote mirror image or a periodically updated remote backup

copy, is subject to similar synchronization problems as transactions with

remote data. In the case of remote copies of data, the control of tem-

porary inconsistency must be considered. Transactions may temporarily
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leave data in an inconsistent state during processing, or longer if the tran-

saction aborts. In this case rollback must restore data consistency. In the

case of backup data the decision as to when to make a backup copy must

be determined. If the rollback affects the remote backup copy, this copy

must be placed in a state such that the data is consistent and coordinated

with the rollback point of the transaction.

Each process, in a distributed system that uses rollback recovery,

takes its checkpoint independently [46]. This asynchronous independent

checkpointing will require a common consistent synchronized point, and

coordination between all processes in checkpointing actions.

Another consideration is the possibility of a failure during the

checkpoint. One approach to the coordination of checkpointing involves a

two phase commit protocol. In this protocol, whenever a process decides to

checkpoint, it informs all other affected processes (which in turn may

inform others). All such processes attempt to take a checkpoint. If succes-

ful, each such checkpoint is flagged as temporary. Once all processes have

reported success to the originating process, the originating process broad-

casts the universal success status and each temporary checkpoint becomes

the permanent current checkpoint. This protocol coordinates the check-

points and removes the need for further rollback. Thus, each process

must maintain only one current checkpoint (or two between the creation of

a temporary checkpoint and its designation as permanent).

2.4.3 Consensus

Cosnuspooola e% u1sed -i a% rlSf-teA syst-e M to identify

faulty processors [9, 21]. A function is replicated at each of n nodes.

Independently calculated results are then broadcast amongst the n nodes
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such that each node can construct a vector recording its copies of the n

results. A decision function is applied to the vector, and the system is con-

sidered "correct" if agreement is observed among the vector elements

above some threshold number.

The safest consensus protocols insist that any processor detected as

faulty immediately dissassociate itself from the distributed system.

Failure models have been constructed under the assumption that proces-

sor faults occur independently according to some random distribution.

While it may be that a failed processor was subject to a temporary aberra-

tion, unlikely to reoccur, the processor if allowed to continue may join with

other failed processors in subsequent Byzantine behavior. The failure

models have shown that immediate disassociation of processors with

detected failures maximizes the time before accumulated processor

failures remove the system from a reliable state.

2.4.4 Clock Synchronization

A typical loosely coupled network lacks a centralized clock-setting

facility. Since each hardware clock will have its own rate of drift from

real time, clock synchronization messages must be passed around the net-

work to keep the individual clocks within some given time difference. Gen-

erally each system calculates a logical time by maintaining an adjustment

to the time on its local physical clock. Clock synchronization algorithms

are used to periodically set this adjustment.

Algorithms to synchronize clock adjustments fall into two
cateor ies, dpnding nn whethebar or -not mcSSagoth Cnt 4ai1 i present.

and assumed valid [81]. The presence of message authentication pre-

cludes a serious type of Byzantine behavior where a system sends
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incorrect synchronization messages while assuming the identity of a dif-

ferent system.

Two assumptions are basic to clock synchronization algorithms:

e 1. The rate of drift for each physical hardware

clock is linear. Let Ri(tj) be the reading of

hardware clock i at time j. Then: for some p>o:

(1+P)-l(t 2-t 1) <  Ri (t 2)-Ri (t 1) < ( +p)(t 2-t 1)

Logical clock i is said to be within a linear

envelope of the real time t.

.2. There is an upper bound on the time for a mes-

sage to be processed by the receiver after being

prepared and transmitted by the sender.

It is easy to see that no synchronization algorithm is possible

without assumption 2, since the time delay from message transmittal

until message receipt and processing would be arbitrary. Assumption 1,

requiring linear physical clock drift, is not a necessary condition for the

existence of synchronization algorithms. But, it greatly simplifies the

analysis of optimal algorithms and is not an unreasonable restriction.

A synchronization algorithm must satisfy two conditions. The

agreement condition is that all correct logical clocks agree on the time

within a given allowable deviation. The accuracy condition states that all

correct logical clocks are within a linear envelope of the real time. Note

that it is not possible to do better than a linear envelope for the accuracy

condition, since no tighter assumption for each physical clock was made.

Fortunately, the critical time element for synchronization is the agreement
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condition.

With these two assumptions, clock synchronization algorithms have

been described which perform correctly as long as more than 2/3 of the sys-

tems are non-faulty. If accurate message authentication can be assumed,

then it is possible to employ algorithms which require only that more than
1/2 of the systems be non-faulty.

As with virtually any model, a loosening of the assumptions allows

for algorithms which handle more general cases. Efficient synchronization

algorithms need make no assumptions about the minimal required propor-

tion of non-faulty processors, as long as the sub-network containing the

non-faulty processors remains connected [22], if another Byzantine

scenario can be ignored, in which faulty processors act in concert by syn-

chronizing themselves to a common incorrect time.

Most clock synchronization algorithms allow for initial start-up net-

work synchronization, but do not allow for the addition of unsynchronized

processors to an already synchronized network. This task is left to a

separate algorithm designed specifically for this function.

2.4.5 Distributed Operating Systems

The control programs of distributed systems can by separated into

three classes [83]: network operating systems (NOS), distributed operating

systems (DOS), and distributed processing operating systems (DPOS).

If each of the hosts contains a fully functional local operating sys-

tem, th1en the operating system software added to these local operating

systems in order to communicate and share network resources is called a

network operating system. A NOS is built on top of an existing operating
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system. It adds the capability to support distributed transaction process-

ing [80]. Besides the usual communications functions (message passing,

file transfer, network virtual terminal, etc.), distributed transaction pro-

cessing requires facilities to support data replication, atomic actions

across nodes, system wide time synchronization, and security for remote

data access.

In contrast to a NOS layered onto a fully functional local operating

system, a distributed operating system controls a network where there is

logically only one native operating system for all the distributed com-

ponents. The DOS manages all the resources of the network in a global

manner. There is a wide variety of DOSs.

A distributed processing operating system takes the concept behind

the distributed operating system one step further. Control is decentral-

ized, thus improving system reliability by eliminating a central point of

failure.

Each of these operating system classes provides for communication

between the distributed sections of jobs. The actual control of the distribu-

tion may be defined by each job itself, or the distributed operating system

may attempt to load balance. Load sharing policies in a distributed

environment [74] require much more information than would be needed in

a tightly coupled multiprocessor environment.

Even in a shared memory multiprocessor system, there are advan-

tages to the use of a distributed operating system [16]. This allows the

ured specifically to optimize the system under the expected workload.
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2.4.5.1 LOCUS

LOCUS [63], a distributed operating system, like MACH, is not

UNIX but emulates the UNIX environment. While MACH's generalized

concept of ports is used to somewhat enhance network transparency, the

main thrust of MACH is the addition of multi-threading and multiprocess-

ing to a UNIX setting. LOCUS, by contrast, has network transparency as

its principal goal. In a high bandwidth local network environment,

LOCUS presents network transparency while remaining application code

compatible with UNIX and uses the required network management rou-

tines to improve efficiency and fault tolerance. LOCUS is not a distributed

processing operating system because each node can run independently

and retains as much local autonomy as possible. LOCUS does manage the

replication of data amongst the nodes and provides extensive synchroniza-

tion routines to efficiently handle data accesses in this distributed

environment.

Walker and Popek [91] discuss IBM's implementation of LOCUS,

the Transparent Computing Facility (TCF) for the AIX operating system.

AIX is IBM's version of UNIX which runs on IBM RT workstations. In

this discussion, they define network transparency as the combination of

six transparency components:

1. Access transparency means that the same system calls are

used to access files, devices, processes, and interprocess com-

munications entities, regardless of the location of the particu-

lar resource.

2. Device transparency is a subset of access transparency. It is

listed separately because access transparency is sometimes

interpreted to refer solely to data file access.

3. Process transparency is also a subset of access transparency.
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This is because process transparency is always present in

access transparency (as part of remote mount distributed file

systems). Listing process transparency separately is meant to

imply a more general concept where a full complement of

processes are remotely accessible.

4. Location transparency means that resources do not have a

site's location built into their name. This allows resouces to

be replicated or relocated.

5. Consistent file access semantics are necessary. Preserving file

access, modification, and synchronization semantics over

processes executing on several different machines is required

for the processes to be able to cooperate.

6. Performance transparency means that the overhead involved

when remote resources are accessed exceeds corresponding

overhead for local resources by a small enough amount that

the additional overhead can be ignored.

The main goal of LOCUS is to make the development of distributed

applications no more difficult than the equivalent single machine applica-

tions, and to employ the distributed environment to maximize the poten-

tial for highly reliable and available operation. The major assumption is

that the machines in a LOCUS network are interconnected with a high

bandwidth, low delay, low error rate communications medium (such as

ethernet). All sites in this network are to run LOCUS, so that there is no

need to support standard protocols (such as TCP/IP or Decnet) between

sites in the network. The processors in the LOCUS network may vary

widely in power and storage capacity.
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Network transparency means that applications need not specify a

specific site for any needed files or services. Locating and accessing the

data or service is entirely within the operating system code. Processes

have associated reliability profiles which are used by LOCUS to determine

optimal replication of resources for the application. This replication may

include data for the application, required services, and copies of the appli-

cation code itself. LOCUS attempts to maintain operation in the face of

errors, including even node failures and partitioning of the network.

Since data and services may be transparently distributed around

the network to users, the names must be network wide unique. The appli-

cations need not know the current location of the desired data or service,

so the unique name may not contain a field specifying any particular

node. And, since data and services may be duplicated, an application

should be dynamically connected to the most efficiently accessed instance

of possibly several currently available at several nodes. For example, if file

"X" has been replicated by the system and exists at nodes A and B, then

an application requesting access to file "X" should be connected to the sys-

tem with the best expected response time. But, since names must be net-

work wide unique, A and B cannot both have a file named "X". The

LOCUS solution is to tag each name with a system identifier. The applica-

tion may invoke a low level selection by specifying the tag, or it may allow

the tag to default, in which case the system on which the application is

running will choose the tag from its current knowledge of network wide

names.

Tags actualy contain considerably more infnrmation than current

system identifier. For example, tags on binary files can indicate which sys-

tems support the necessary run-time environment. This is so that the
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Network transparency means that applications need not specify a

specific site for any needed files or services. Locating and accessing the

data or service is entirely within the operating system code. Processes

have associated reliability profiles which are used by LOCUS to determine

optimal replication of resources for the application. This replication may

include data for the application, required services, and copies of the appli-

cation code itself. LOCUS attempts to maintain operation in the face of'

errors, including even node failures and partitioning of the network.

Since data and services may be transparently distributed around

the network to users, the names must be network wide unique. The appli-

cations need not know the current location of the desired data or service,

so the unique name may not contain a field specifying any particular

node. And, since data and services may be duplicated, an application

should be dynamically connected to the most efficiently accessed instance

of possibly several currently available at several nodes. For example, if file

"X" has been replicated by the system and exists at nodes A and B, then

an application requesting access to file "X" should be connected to the sys-

tem with the best expected response time. But, since names must be net-

work wide unique, A and B cannot both have a file named "X". The

LOCUS solution is to tag each name with a system identifier. The applica-

tion may invoke a low level selection by specifying the tag, or it may allow

the tag to default, in which case the system on which the application is

running will choose the tag from its current knowledge of network wide

names.

Tags actually contain considerably more information than current

system identifier. For example, tags on binary files can indicate which sys-

tems support the necessary run-time environment. This is so that the
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network may contain processors with different architectures and different

nodes may contain different local peripherals and drivers. Again, the aim

of LOCUS is to provide default tags which are based on a system under-

standing of the required resources, rather than requiring the user to expli-

citly defined appropriate tags. LOCUS, like UNIX, uses the file system

hierarchy to define names for services along with data file names.

Because file names, including path information, are visible to UNIX

applications, the high level view of the LOCUS file system emulates the

UNIX directory tree structure with all names unique across the network.

The low level view of the LOCUS file system also maintains names that

are globally unique. In UNIX, the file system is partitioned into file

groups. Each file group consists of a set of file descriptors and a (much

larger) set of data blocks. So, a low level file name is described as: <file

group number, file descriptor number>.

In LOCUS, since file groups can be replicated, the UNIX file group

number becomes a LOCUS logical file group number. There is an addi-

tional mapping from the logical file group number to the physical file

group number. Since logical to physical can be a 1-to-many mapping, these

map routines choose the optimal physical file group. Note that this means

that a file can only be replicated at a node which contains the file's physi-

cal group. However, the presence of a physical file group at a node does

not imply that all files in that file group must be present at this node.

The replication of objects, both data and services, across the net-

work mandates that LOCUS provide synchronization mechanisms far

beyond those employed by standard UNIX. Recall that MACH employed a

variety of synchronization services within a single shared memory system.

LOCUS synchronization mechanisms emphasize distributed object locks.
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Because LOCUS was designed for efficiency in a high-bandwidth local net-

work, synchronization policies must also aim for efficiency - holding distri-

buted locks for as short a time as possible.

The general synchronization approach taken by LOCUS is the "mul-

tiple readers, one writer" policy. Write access to an object (such as a file)

locks it from other write accesses. Replicated copies must be updated or

invalidated. If a replicated copy is invalidated, then current read accesses

must be redirected transparently to the reader. The copies can then be

re-replicated once the writer has closed its link.

This policy is not always sufficiently granular. For example, when

updating a file it is also necessary to have write access to the containing

directory. It is not reasonable to lock the containing directory for the

entire time that one of its contained files is open for writing. On the other

hand, implementing locks at the record level would entail high overhead

and would be incompatible with standard UNIX (as it would be visible to

applications). An application could gain access to a file but be unexpect-

edly blocked from a certain record. To get around this policy as gracefully

as possible, LOCUS defines a nolock read.

The nolock read ignores any write lock on the file. Instead, it locks

the file itself, but only for the duration of the current read. This means

that if the file can be written in multiple steps, then a nolock read

between the steps would result in the access of inconsistant data. Direc-

tories in LOCUS are updated by atomic writes, so the nolock read is used

as the solution to the directory access problem. Other objects limited to

atomic writes may also be read correctly and efficiently by nolock reads.
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For each logical file group, one site is designated as the current

synchronization site (CSS). The CSS coordinates all access (except nolock

reads) to the files in its group, ensuring that the requestor receives the

latest version of the file. It is not necessary for the CSS to contain locally

any of the physical files in that group; any site may serve as CSS for any

file group.

The designers of LOCUS approached reliability considerations as

part of four broad classes:

1. The ability to substitute alternate versions of resources to

replace a flawed original. This is addressed by the replication

of objects, including files and services, and their transparent

access across the high-bandwidth local network. In the case

of a resource failure, LOCUS attemps to handle the substitu-

tion at as low a level as possible, signalling the application

only in the case where transparent substitution is not possi-

ble.

2. File committing is used to ensure atomicity of multiple file

updates where this is necessary. Commit is automatic at file

close time, but applications may also request commit at any

time between single updates. Commit causes the changes to

be made permanent at the site of the physical file, followed

by propagation of the new version of the file in parallel to

other storage sites.

3. LOCUS is a distributed operating system (DOS), but not a

distributed processing operating system (DPOS). This means
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that even if a site is completely isolated from the network, it

can continue useful work with the services and data locally

available.

4. The interaction between the machines is designed to promote
"arms length" cooperation. That is, as the LOCUS operating

system receives messages from other machines it performs

consistency checking against its view of the current state of

the network. LOCUS distributes resources, but not control, so

it attempts to prevent illogical messages from corrupting its

view of the network.

Network topology changes (sites entering or leaving the network)

are handled by LOCUS at a low enough level to be transparent (if possi-

ble) to standard applications. As with other lost resources, the application

is signalled only if transparent continuation of operation cannot be accom-

plished. The topology change procedure runs a simple algorithm at each

remaining site; this algorithm forges consensus on a coordinating site

which then accomplishes the actual topology change. The coordinating site

polls other sites to reconstruct network wide data structures and broad-

casts copies of the reconstructed structures. If a deleted site was the CSS

for a file group, the coordinating site chooses a different site to becoome

the CSS. The new CSS must then synchronize information relating to that

new file group. It invokes the file group recovery to ensure replicated file

consistency and decides on further replication sites.

It was previously stated that LOCUS supported continued opera-

tion even if the network becomes partitioned. A partitioned network

allows multiple writers: one per partition on instances of the same file.
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The problem arises when the partitions are joined. LOCUS attempts to

support this by defining a version vector which is maintained with each

copy of the replicated data object. After join, as the data objects are

merged, the version vectors are compared to detect conflicts. On certain

data objects which are managed by LOCUS and are restricted to add and

remove operations (such as user mailboxes and file directories), LOCUS

can resolve conflicts. In other cases, conflicts must be reported to higher

layers (data management routines or, as a last resort, to the application)

which may be able to resolve the conflict.

LOCUS does not follow the UNIX (and MACH) objective of minimiz-

ing the kernel by restricting it to such basic functions as dispatching and

address space manipulation. Rather, LOCUS maximizes efficiency by

including common system routines in the kernel. This saves the overhead

of process creation to handle these common services.

Kernel routines are implemented through kernel support for light-

weight processes called server processes. A server process does not have its

own address space; all its code and its stack are present in the kernel per-

manent storage. Server processes call other operating system routines

directly. Server processes are linked directly into the kernel and remain

static until the system is reinitialized with an updated version of the ker-

nel. Network requests are handled by server processes. This, along with

the required high bandwidth network, allows LOCUS to handle the

volume of communications required to support replication of objects across

the network much more efficiently than if it followed a standard network

layerng" concept such. as 051.

LOCUS uses the current configuration data to optimize operations.

Access to a file which exists only at the local site and whose CSS is local



60

(true except in unusual circumstances) results in the bypass of virtually

all network routines. The cost is a slight additional complexity in proto-

cols.

2.4.5.2 MEDUSA

MEDUSA [60, 79] is a distributed processing operating system

(DPOS) designed specifically to run on the Cm* hardware. MEDUSA was

not designed simultaneously with Cm* but rather as a replacement for

StarOS, which was the original Cm* operating system. The Cm*

hardware, with its connection of many low capability processors, is a

testbed for distributed operating system design. The interconnecting

modules (Kmaps) are microprogrammable, and in fact should be micropro-

grammed specifically to support the communications protocols and

memory mapping needed by the current operating system.

As can be seen in Figure 7, Cm* consists of a number of computer

modules (in this case 50) grouped into a number of clusters (in this case

5). Each cluster consists of a number of computer modules and a Kmap,

with a single bus interconnecting all the computer modules within a clus-

ter and the cluster's Kmap module. The Kmap modules are then con-

nected to each other by a dual (redundant) bus. There is nothing magic

about the number of computer modules per Kmap or the number of

Kmaps, as long as the microprogrammable Kmaps can be programmed to

handle the desired configuration.

Each computer module (cm) is a Digital Equipment microcomputer

(LSI-11) with 64K or 128K bytes of memory. The LSI-11 has hardware

support for two address spaces. Typically address space 0 contains an

operating system (in this case the MEDUSA kernel) and address space 1
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for user tasks. The KInaps are special purpose communication controllers,

microprogrammable, with 4K of 80-bit microprogram store per Kmap.

There are no hardware precedence levels between Kmaps or between cm's.

This means that there is no central authority in the system; all coordina-

tion must be software enforced.

KmaP4 Kmaa3

Interclustor Bus

MaP Bus

Figure 7. Cm* Hardware Structure [60]

From Figure 7, Cm* appears to be simply a network with dual con-

nections between bridges. An examination of Figure 8 shows that each cm

(an LSI-11) has actually been modified by the additiw, of a module called

11 Soa!.' This Soca! has been inserted let woon the T SI-!i nrocessor and

the memory bus. As is true with the PDP-11, the memory bus is actually a

general purpose bus which accesses both memory and peripheral I/O
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devices through the same local address space. Any memory address refer-

enced by the LSI-11 is sent to the Slocal, which decides whether to route

the request to the local memory space or instead to send an appropriate

message to the cluster Kmap over the map bus.

Mao Bus

PC Slocal must f ams

.kytes)

Figure 8. Computer Module (cm) Organization [60]

The general concept of Cm* should now be clear. As each LSI-11

accesses a memory location, the Slocal checks to see if the address is

available in the local- address space. If so, the data is fetched with

minimal delay. If not, the Slocal must format a message and send it to the

cluster Kmap. If the requested data is available within the cluster, the

Kmap will send a message to the appropriate Slocal, which will send a

message including the data to the requesting Slocal. If the requested data

is not available within the cluster, then the Kmap must send a request by

message to the appropriate other Kmap, which sends a message to the

appropriate Slocal within its cluster, etc.

Despite the fact that the sole purpose of the Kmap is to facilitate

Slocal to Slocal communication, there is a significant delay involved in the
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access of non local data. Average access times in a lightly loaded Cm* sys-

tem running MEDUSA are: 3.5 ps for local reference, 11.2 gs for non-local

reference within a cluster, and 30.5 ps for inter-cluster reference. Maximiz-

ing system efficiency can be seen to be virtually synonymous with maxim-

izing the local hit ratio.

The Slocal is a hardware device which operates off the memory

address bus. This means that an LSI-11 processor could actually be exe-

cuting a program whose code is not present in the local memory. It is hard

to imagine when this might be desirable. Since an LSI-11 has no cache

memory, execution efficiency would be low. The Cm* configuration makes

the possibility of upgrading the processors to models with cache memory

minimal since cache coherence would grossly complicate the responsibili-

ties of the Slocals and Kmaps and destroy the emphasis on minimal delay

memory references and message passing.

MEDUSA consistes of three distinct parts: the MEDUSA kernel

(which runs at each cm), the utilities (which are distributed), and the sup-

porting Kmap microcode. The emphasis within the Cm* project is the

study of approaches to distributed processing as an alternative to a much

larger single machine. That is, how can problems be solved more quickly

(and/or at lower cost) in a distributed system. Fault tolerance is a secon-

dary consideration. In fact, the only hardware devoted to fault tolerance is

the dual interconnection bus between the Kmaps. However, the nature of

the massively replicated hardware, although designed for parallel process-

ing, allows the software a foundation from which to include fault tolerance

principles.

The fundamental unit of control in MEDUSA is the task force.

task force is a collection of concurrent activites. Each activity is a task
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which runs on a single processor. All programs in MEDUSA, including the

system utilities, are task forces. A task force may have only one activity,

in which case it is the equivalent of a single task on a uniprocessor. How-

ever, the low individual capacity of each LSI-11 cm means that many pro-

grams, including most system utilities, must be run as multiple activity

task forces. The individual activities communicate and coordinate through

messages. Recall that the sole purpose of the microprogrammed Kmaps is

to provide efficient message passing services.

In addition to its activities, a task force contains a collection of

objects to be accessed and manipulated by these activities. These objects

are divided into three classes: page objects, pipes and semaphores, and

control data structures.

A page object is simply a 4K portion of some activity's address

space. Recall that while a task force may encompass many cms, each

activity is a single task on a single cm. The LSI-11 supports a 64K

address space for a task; this is composed of 15 page objects (4K each),

with 4K reserved for data associated with communications between the

cm and the cluster's Kmap. An access of non-local data may result in the

transfer of a small data item or the transfer of the entire enclosing page

object. Kmaps and Slocals are optimized for transfers of up to a full page

object in a single message.

Pipes and semaphores are the message passing and synchronizing

structures used in MEDUSA. They are implemented primarily in Kmap

microcode, with kernel routines to map into the protocols. The internal

representations are not directly accessible to the LSI-11 programs (includ-

ing the kernels). This both protects the Kmap (which aids in isolating

aberrant behavior) and also allows transparent Kmap microcode updates.
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Control data structures include file control blocks, task force control

blocks, descriptor lists, etc. These are implemented mainly by the operat-

ing system utilities. Application programs send messages (through pipes)

to these utilities in order to perform operations on control data structures.

Each cm runs a MEDUSA kernel in its address space 0. The

kernel's sole purpose is to supply simple multiplexing between the device

drivers (present in address space 0) and the user and utility activities

allocated to this processor (present in address space 1). Even decisions

regarding priorities among activities are left to the system utilities. The

kernel responds only to hardware interrupts and messages from the sys-

tem utilities. User activities are not granted direct communication

privilege; they must communicate with the kernel through the system util-

ities.

All kernel memory is local. The kernel never accesses a non-local

address; this would result in a Slocal message to the cluster Kmap which

means that in case of catastrophic Kmap failure the kernel would be non-

operational. So, each cm is isolated from external failures. An isolated cm

is ordinarily not very useful in a highly distributed system such as Cm*,

but at least the kernel will remain operational so that it can shut down

gracefully after saving some termination information.

Since the MEDUSA kernel is minimal, most of the operating system

functions are provided by the system utilities. These system utilities are

given privileges not available to user task forces, such as the ability to

communicate with the kernel. There are five utility task forces, each

implementing several abstractions for the rest of the system. These five

are: the memory manager, the file system, the task force manager, the

exception reporter, and the debugger/tracer. Activities within the utility
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task forces share no common memory; shared data is distributed through

messages. In this way, utility activities are in no way restricted as to dis-

tribution amongst computer modules.

MEDUSA pipes are similar to those of UNIX, where a pipe is a con-

nected socket pair. Because MEDUSA uses pipes exclusively for communi-

cation with the operating system (UNIX uses subroutine calls and kernel

traps for most operating system user interfaces) a MEDUSA pipe cannot

be quite as unrestricted as in UNIX. Messages in UNIX are simply

streams on uninterpreted bytes. MEDUSA maintains the concept of an

uninterpreted stream, but adds control information as to message source

and message boundary. In UNIX, the fact that it is possible to read, for

example, 10 bytes from a pipe could mean that there is a 10-byte message,

or 10 1-byte messages from as many as 10 different senders, or anything

in between. Since system utilities in MEDUSA rely exclusively on multi-

sender pipes to communicate with user activities, a malicious user activity

could make it impossible for the utility activity to accurately separate out

the malicious messages. Sender information and message boundaries

allow for the needed discrimination between messages in the received byte

stream.

While the data in the pipes can be interpreted by the receiver in

any way, the MEDUSA system is designed to optimize "pass by value"

messages. A pointer may be passed, and when the pointer is used by the

receiver to access data, that data will be made available by the Slocal.

Since pointers are frequently to large structures, only a small subset of

which wi._'ll actually be accessed, this minimizes actual data transfer. How-

ever, since the Kmaps are optimized for transfers of up to a page object

(4K) it is usually preferable to transfer the actual data rather than a
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pointer and thereby avoid the subsequent transfers of the needed indivi-

dual data items by separate messages from the Slocal.

As was mentioned, the only hardware specifically included for fault

tolerance is the dual inter-Kmap connection bus, although by its distri-

buted nature the hardware replication provides obvious support for fault

tolerance through software replication. MEDUSA also emphasizes efficient

distribution of processing, although through its control over distributed

software with location transparent communications it provides a solid

foundation for fault tolerant applie:jons. MEDUSA implements fault

tolerance on the operating system level through the replication of each

utility task force

The general approach supported by MEDUSA, to allow software

monitoring and migration, is called the buddy mechanism. An activity can

designate any other activity in its task group to be its buddy. Any excep-

tion not processed by the original activity is then passed on to its buddy.

This can be supplemented by periodic communication between the original

activity and its buddy. The buddy may be a standby activity whose sole

purpose is to back up the original activity, or it-may have a function of its

own. Ordinarily the buddy would run on a separate cm; in any case the

buddy is allowed access to the entire aduress space of the original activity.

(In some cases, such as cm hardware failure, no original data may be

available). The system utilities use the buddy mechanism in case of failure

to detect the failure and move communication pipes from the failed

activity to its replicated copy.

2.4.6 Distributed Programming Languages

Distributed programming languages provide high level mechanisms
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for process communication and synchronization. The categories of distri-

buted programming languages are [83]: concurrent programming

languages, message passing languages, remote procedure languages, and

hybrid languages.

Concurrent programming languages include Mesa, Modula, and con-

current Pascal. These languages provide for the interaction between

processes via the sharing of resources, including variables in shared

memory. This is an appropriate approach only for a multi-tasking unipro-

cessor or shared memory multiprocessor environment.

Message passing languages include CSP, Gypsy, PLITS, Guardian-

extended CLU, and Smalltalk. These languages use mailboxes and mes-

sages for interprocess communication, rather than shared resources. This

approach is less efficient in a shared memory environment, but has the

advantage that it can also be implemented in a loosely coupled network

environment.

Remote procedure languages include Distributed Process, Argus,

and Ada. Messages are still used for interprocess communication, but the

interface to the user is strictly that of standard procedure calls; the

details of the actual message passing are hidden from the user by the pro-

cedure call interface. The user therefore need not be concerned with the

underlying message passing protocol.

Hybrid languages include *MOD and SR. As the name implies,

these languages implement both shared resource and message passing

communication facilities. The idea is to be able to tightly bind processes

sharing memory while also allowing communication (less efficiently)

between remote cooperating processes.
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for process communication and synchronization. The categories of distri-

buted programming languages are [831: concurrent programming

languages, message passing languages, remote procedure languages, and

hybrid languages.

Concurrent programming languages include Mesa, Modula, and con-

current Pascal. These languages provide for the interaction between

processes via the sharing of resources, including variables in shared

memory. This is an appropriate approach only for a multi-tasking unipro-

cessor or shared memory multiprocessor environment.

Message passing languages include CSP, Gypsy, PLITS, Guardian-

extended CLU, and Smalltalk. These languages use mailboxes and mes-

sages for int.erprocess communication, rather than shared resources. This

approach is less efficient in a shared memory environment, but has the

advanta,e that it can also be implemented in a loosely coupled network

environment.

Remote procedure languages include Distributed Proce.0s, Argus,

and Ada. Messages are still used for interprocess communication, but the

interface to the user is strictly that of standard procedure calls; the

details of the actual message passing are hidden from the user by the pro-

cedure call interface. The user therefore need not be concerned with the

underlying message passing protocol.

Hybrid languages include *MOD and SR. As the name implies,

these languages implement both shared resource and message passing

communication facilities. The idea is to be able to tightly bind processes

sharing memory while also allowing communication (less efficiently)

between remote cooperating processes.
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2.4.6.1 PLITS

PLITS (Programming Language in the Sky) [26] adds three con-

structs to the normal programrnming language environment: modules, mes-

.ages, and aasertions. A module shares no information with other

modules (there are no global variables) and modules communicate with

each other only through the exchange of asynchronous messages. Asser-

tions are employed to allow the PLITS compiler to optimize consistency

checks.

First, some PLITS definitions. Note that PLITS tends to redefine

common data processing terms rather than create new ones, which can be

confusing. A distributed job (DJOB) is a collection of modules cooperating

with each other in a single application. The DJOB may be distributed over

several network connected systems (see Figure 9). Modules within a

DJOB at a single system which communicate mainly with one another or

share code may be grouped together; they then become a site. Any DJOB

may have multiple sites at a single system and/or at multiple systems.

b.,ach DJOB has a single module called the controlling module. The con-

trolling module initiate- and terminates the DJOB. It is also responsible

for taking appropriate action if one of the other modules in the DJOB

fails.

Each site includes a collection of routines called the kernel. Recall

that each system will in general have multiple sites, so these site kernels

are in addition to the underlying operating system kernel. The site kernel

implements multi-threading and message passing amongst the modules
wiilin the site. There is a single Host o^ntrl Prngrm (HCP) per system.

When a kernel at a site needs to exchange messages with other sites it

communicates with the HCP. The HCP forwards the messages, either to
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the appropriate site kernel at the local system or the HCP at the

appropriate remote system.

1OjobA 

DHCP 1 Link

Machine 1 Machine 2

Figure 9. PLITS Distributed Jobs [26]

A message in the PLITS environment is highly structured. It con-

sists of a sequence of (name, value) pairs, called slots. PLITS enforces

typing on the value portion of each slot. The HCPs automatically perform

conversions as required. For example, different system might differ in

their representations of floating point numbers. This implies that all

modules within a site must support the same primitive data types, since

the HCP is not involved with communications within a single site.

The PLITS commands to send and receive messages are, naturally

enough, SEND TO and RECEIVE. RECEIVE may be blocking or non-

blocking. The parameter may be a predefined message (think of a message

as a structure of slots) or it may be a sequence of variable names (from

which PLITS will construct a temporary message.) In either case, the



71

name portion of each slot must have been declared as public so that typ-

ing information will be present in the header to the executable program

file. The names within a message must have been declared public in both

the sending and receiving module so that they can be compared as to type

by the site kernels (for communication within a site) and by the HCP (for

intersite communication with possible conversion).

Selective receives are optional. A client who has sent a request to a

server may wish to receive a reply before processing any other incoming

messages. So, a specific sender may be specified with a RECEIVE

request. A more general option is also available: a SEND request may

include a request for the site kernel to assign a unique transaction key.

The module may then selectively RECEIVE a return message with that

particular key. This allows the server to pass on the request to a third

module, which can answer directly rather than having to return the mes-

sage through the original server. The server, and any third module it may

use, must record the transaction key and send the same key as part of its

return message.

An assertion is a predicate which is guaranteed to be true at run

time. Assertions are used to check for consistency during program execu-

tions. These have two basic forms: ASSERT (assertion) which generates

an exception if (assertion) is not true, and UNDER (assertion) DO (state-

ment) which conditionally executes (statement). The assertion mechanisn

does not add any power unavailable through standard "if' constructs. Its

purpose is to allow the compiler to employ artificial intelligence (AI) tech-

niniQ for rim, time ontimniztion. The iMa is fn tlre each assertion - a

sequence of disjunctions and conjunctions of predicates - and reduce the

assertion to its simplest form. In some cases, the result will be a constant
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so that all the work will have been done at compile time. In other cases,

the simplest form will hopefully entail much less run time overhead than

the original, which will encourage programmers to employ assertions more

often than they might otherwise.

PLITS is mostly an approach to distributed computing. Implemen-

tations have always been subsets of the full PLITS standards, in academic

settings. Fault tolerance is minimal: messages between modules are typed

and optionally tracked (with transaction keys), programmers are

encouraged to use assertions liberally to check for illogical states during

program execution, and distribution of sites across systems allows alter-

nate hardware configurations. But, runtime module relocation is not sup-

ported, a single control module is responsible for each distributed job, and

virtually any module failure (site kernel module, HCP module, user

module) can bring down the job or the entire PLITS environment.

2.4.6.2 ARGUS

The basis for the ARGUS integrated programming language and

system [50] is to address that class of applications in which the manipula-

tion and preservation of long-lived data is central. These applications

include banking systems, airline reservation systems, office automation

systems, and data base systems. ARGUS provides constructs and facili-

ties in the context of a high level language. These constructs and facilities

allow for the distribution of the data and the processing requirements

amongst the nodes of a loosely connected network.

Tha intan1arl nnr i irfinn 1cs ninna wixrith t'hc ciinmarl lAnccxlI enn-

nected hardware environment, leads to several requirements: service,

extensibility, autonomy, distribution, and consistency.
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The service requirement is to provide continuous service of as much

as the system as possible in the face of failures, including node and net-

work link failures. Local programs should be localized, with replication of

data and processing allowed for throughput or backup purposes. Replica-

tion can increase the availability of a service and allow graceful degrada-

tion in response to failures.

The usual concept of extensibility, where, hardware may be added to

a system in order to increase processing speed, allow additional on-line

data storage, etc., is generalized to allow the addition of entire nodes to

the network. These additions may be physical, where new communication

links make additional nodes reachable, or they may simply be logical,

where an application system expands its processing and data across addi-

tional nodes in order to increase reliability, processing or data capacity, or

response time. Both physical and logical changes must be dynamic, so that

application systems need not be shut down and restarted in order to util-

ize the changed environment.

Since the individual nodes may be owned and/or controlled by indi-

vidual organizations, each node must be allowed a high degree of auton-

omy. The owner of each node must be able to restrict access to the data

and services available at that node. A distributed application must not be

able to override restrictions present at any node that the application uses.

The fact that autonomy may be enforced at specific nodes makes

ARGUS more suitable to the client/server [84] model of distributed pro-

cessing. In this model a job need not control the placement of its distri-

buted sections. Rather, server processes are distributed and may be con-

tacted as necessary. The server process responds to requests, but is not

controlled by them. In this way these server processes may be controlled



74

locally at their physical nodes.

A distributed application allows true concurrency, where two or

more processors are simultaneously executing separate threads of control

within a single application. Concurrency optimizes throughput and

response time. It is a major factor in the ability of networks of relatively

low power processors to replace much more powerful (and expensive)

mainframes for those applications which can be efficiently distributed.

Any system in which data is being read and modified must

emphasize the maintanence of consistency. To guarantee consistency

becomes more difficult when the processes performing the data modifica-

tions are distributed. The concept of locks must be generalized and

expanded to handle slow and relatively unreliable communication links.

Efficiency is inversely proportional to the length of time a lock is held and

the time will in general be much longer in a loosely coupled system, as

compared to a uniprocessor or tightly coupled multiprocessor system. Data

replication adds another layer of complication; not only must a set of data

be consistent but it must be consistent with its replicated copies.

The above requirements are used as the basis for the design of

ARGUS. The purpose of ARGUS is to allow the high level language pro-

grammer to design and implement a distributed program meeting these

requirements through facilities internal to the language environment. The

actual syntax of ARGUS is based on the object oriented language CLU,

which supports a wide set of abstraction mechanisms. These support well

structured programs, a prerequisite for separation into distributable

modules. ARGUS extends CLU by defining additional abstraction mechan-

isms.
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The ARGUS approach to maintaining consistency in a distributed

environment is based on the atomic activity. In ARGUS, an activity can be

thought of as an operation that examines and then changes the system

state from an initial value to a final value, with possibly intermediate

values. An ARGUS activity is atomic if two properties are present: indi-

visibility and recoverability. An activity is indivisible if the execution of

the activity appears to neither overlap nor contain the execution of any

other activity. This means that the final values of any system state

changes performed by an atomic activity depend solely on the initial sys-

tem state at the commencement of the activity. An activity is recoverable

if the effect of the activity on the final system state is all-or-nothing. That

is, if the activity does not complete successfully then tl e final values of

any system state changes performed by the activity must be maintained

at, or restored to, their initial values.

Atomic activities therefore see only the final states of values

affected by other atomic activities. The atomic activity requires an over-

head as the cost of maintaining consistency, but if it were not built into

ARGUS an equivalent mechanism would be required anyway. Atomic

actions are central to ARGUS and are called actions. Values examined

and modified by actions are called objects. An object may be as simple as a

basic data item, or as complicated as our usual concept of an object as

encompassing any amount of data along with operations to manipulate

that data.

An object is stable if it is maintained on a stable storage device. An

object is atomic if it is protected by synchronization and recovery manage-

ment. Since the overhead is high, objects are defined as atomic only when

necessary. For example, an object referenced only by a single activity



76

could be defined as non-atomic. An activity is an atomic activity (ie: an

action) that requires that all shared objects referenced by the action are

atoirc objects.

ARGUS implements atomic objects through a basic locking mechan-

isms. There are only two types of locks: read locks and write locks. The

mechanism is standard: multiple readers are allowed but a write lock

allows no other readers nor writers. When a write lock is granted a ver-

sion of the object is created. This version is the copy of the object acted

upon. If the activity completes sucessfully, then the updated version

replaces the original object. Otherwise, the version is discarded. In either

case, the write lock is then released. An activity that completes success-

fully is said to commit, an unsuccessful activity aborts. An activity may

obtain multiple write locks, but there is always a single commit to make

object changes permanent and release the locks.

A failure at a node which cannot be handled by the ARGUS system,

such as a harware failure, causes the ARGUS system at that node to

cr,sh. Activities with write locks on objects at that node are aborted,

since possible intermediate values in the current version are no longer

available. ARGUS attempts to implement paths to replicated copies of

lost objects. This node failure procedure is actually simply a collection of

abort steps which ARGUS would implement individually in the case of a

single object failure.

Recall that an action is an atomic activity that must commit before

changes it makes to objects become permanent. While an action must be

atomic when viewed externally, its internal structure should allow for

modularization to promote structuring. For this, ARGUS allows (and

encourages) nesting of actions. Sub-actions may be performed
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sequentially or cuncurrently. Sub-actions appear to be atomic to each

other, following the same commit or abort procedure as all actions do.

However, the commit of a sub-action is conditional. It appears to the other

sub-actions (at the same nesting level) that the commit is permanent, but

the parent action continues to maintain the updated object as a version.

Only when the highest level action commits do all objects affected by it

and its descendents become updated with the temporary versions. At this

point, the write locks are released.

An action has total responsibility for its sub-actions. It can at any

time commit or abort. In either case, this aborts all sub-actions still in

progress. This provides a convenient aprroach to such uses as "commit

when a majority of sub-actions have committed" (consensus) and "immedi-

ately abort if a single sub-action has aborted" (stop on error). An action

cannot execute concurrently with its sub-actions. It defines the subactions,

their sequential and concurrent ordering, and the procedures to follow as

the result of sequences of sub-action commits and/or aborts. After the

sub-actions have commenced, the parent action cannot regain control until

all sub-actions have terminated. An early termination, such as a time-out,

must be predefined at the sub-action start point. For example, a timer

subaction can be started concurrently with the processing sub-actions, and

a commit by the timer action could be defined so as to force aborts by any

remaining processing sub-actions.

The single writer, multiple reader, lock mechanism must be

extended to handle nested actions. An action may obtain a read lock on an
Ab-+' ^P vr*4-^ IV , PA~L. ^LCI 1 ,- 1J -l- --- V k U - -- OJ

ancestor action. An action may obtain a write lock on an object despite

the presence of read and/or write locks if all such locks are owned by an
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ancestor action. Recall that actions cannot execute concurrently with

their sub-actions. Since the extended lock rules allow for a non-exclusive

write lock only if all other locks are held by an ancestor action, and since

those ancestor actions cannot be executing concurrently with the present

writer, it is sufficient to maintain a stack of versions for the object. A com-

mit causes the top version in the stack to become the current version for

the parent action, while an abort causes the top version in the stack to be

discarded.

Remote procedure calls, and messages in general, follow at-most-

once semantics. That is, a message is delivered exactly once, with a reply

received, or the sender is so informed and allowed to choose the appropri-

ate action. This allows communications to be treated as sub-actions. A

failed communication becomes a sub-action which aborts. So, the powerful

ARGUS sub-action sequencing and termination controls are available for

remote communication.

Actions (atomic activities) and atomic objects are the basic ARGUS

building blocks. A high level view would show that an ARGUS distributed

program consists of a group of guardians. Each guardian encapsulates one

or more resources and controls access to these resources. Each guardian

provides as an external interface a set of operations, called handlers,

which can be called by other guardians through remote procedure calls.

Internally, each guardian contains data objects and processes; each data

object is either global to the guardian or local to one specific process

within the guardian. Each guardian exists entirely at a single physical

node.

ARGUS provides support for restarts of guardians after node

crashes. This assumes the availability of the stable objects, possibly
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through alternate paths to on-line storage devices or through replication.

The language support system recreates the guardian using the stable

objects. Each of these objects is current as of the last commit of a high-

level action. The guardian must provide a predefined process to recreate

any non-stable objects. An example of a non-stable object might be a run-

ning total which can easily be recalculated from some set of stable objects,

so that it is not worth the overhead involved if the running total had been

declared as a stable object. Versions of objects will have been lost, but

then that is what would be expected since a node crash can be thought of

as causing an abort of all current actions.

Guardians and handlers can be thought of as an abstraction of the

physical distributed system, with the handlers providing for communica-

tions between the independent guardians. Several guardians may be

present at a single physical node, but inter-guardian communication is

independent of location. The at-most-once semantics of messages (includ-

ing handler calls) ensure that the handler either succeeds completely or

has no effect. The ability to form communications as sub-actions allows for

concurrency while awaiting a response. A call to a handler causes the

ARGUS executive to form it as a message and forward it to the appropri-

ate guardian. However, the sender can treat the call as simply the execu-

tion of an action since the eventual return message will be presented by

ARGUS as a commit or an abort.

The structure of actions, atomic objects, locking mechanisms, and

concurrency restrictions of actions and sub-actions, together provide a

high degree of synchronization for concurrency. However, there are some

additional considerations. For example, guardians may include processes

to run in the background and processes to handle certain recovery
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procedures. These run outside the action system. In addition, the user

may occasionally want to employ a locking structure more general than

that provided, such as to allow simultaneous read access to an action and

write access to a concurrently executing action. (ie: rapid response may be

more critical than absolutely current data.) For this, ARGUS provides an

object called a mutex. Each mutex controls a critical region and in addi-

tion has a data object associated with it. While any process is executing in

the critical region, no other process is allowed to execute in that region

and the data object cannot be written to stable storage. So, even though

other actions may have a write lock on the data object, any commit is

delayed until the process currently executing in the critical region has left

the region. This can be used to guarantee that only consistent states of

the data object are ever written to stable storage.

The ARGUS language provides a high level approach to the distri-

bution of processing. It guards the distributed data by synchronizing con-

current access to the data, by requiring that all calls to a guardian be

approved by a handler within that guardian, and by providing stable

copies of the data so that the guardian can be restarted after a node

crash.

Despite the sub-action restrictions on concurrency, the system must

do quite a bit of work to assure synchronization. For each atomic object, a

history of actions must be maintained. As sub-actions commit and abort

this history is updated. When the top-level action commits, the history

must be consulted to assure that any other guardian which called us

thIugh~, ha nd f- that touched this particular data nhict has not since

aborted. Only after all this can the object be updated on stable storage.



81

The concept of ARGUS includes significant considerations for fault

tolerance. Data rollbacks are inherant at several levels. Inter-guardian

communication is location dependent and guardian restart in the case of a

node crash is supported. It must be noted that there is no consensus

mechanism. That is, any failure is assumed to be detectable immediately,

with no allowance for Byzantine behavior by any part of the network.

2.4.6.3 *MOD

*MOD (pronounced 'starmod') [19] is a high-level language designed

to facilitate the distribution of tasks within a program across a loosely

connected network of processors. Language constructs are provided which

aid in the development of programs utilizing multi-tasking. The language

syntax which supports this multi-tasking over loosely coupled systems is

very similar to general purpose language syntax to support multi-tasking

on a single system.

A concurrent program requires multiple processes for its implemen-

tation. A distributed program can be characterized as a concurrent pro-

gram which requires nmultiple processors amongst which its multiple

processes can be allocated. *MOD is intended to generate distributed pro-

grams for both applications and systems functions. Because it must sup-

port systems functions, *MOD is designed to be transparent. A language

is transparent if any system state which could be obtained by program-

ming the component machines could also be obtained by using the

language. In particular, *MOD allows the programmer to define and

schedule processes, to allow processes to change in response to workload

and response time requirements, and to orgainize the program to reflect

the structure of the network and the capabilities of the individual proces-

sors.
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As might be guessed from its name, *MOD is based on the mouale

concept of the Modula language. A module consists of the interface specifi-

cation, data structures, procedures, processes, and initialization informa-

tion. *MOD extends the module types and options to allow for interproces-

sor communications.

The highest level *MOD module, which defines the program itself,

is called a network module. This module defines the structure of the net-

work and the links between the individual *MOD processors. Note that

*MOD uses the term processor to define that part of a program which will

run on a single loosely connected system. For example, if one of the loosely

connected systems was itself a tightly coupled dual processor, then that

portion of a *MOD program (network module) assigned to the multiproces-

sor could use both physical processors but would still be considered a sin-

gle *MOD processor.

While the main purpose of the *MOD network module is to detail

how to assign the *MOD processors amongst the physical processors and

to define the intercommunication links, a network module may also define

constants, procedures, and processes which will be global among the

*MOD processors. The compiler simply copies them into the individual

processors; their presence in the network module assures consistency.

The *MOD processor module contains the *MOD processes which

can be multitasked, along with global data and procedures that can be

shared among these processes. All data and procedures can be local to a

single process or procedure, or can be globally available either read/write

or read only. Global definitions use import and export attributes. When a

module (process or procedure) is imported, all of its internal names with

the export attribute are available to the importer. To minimize import
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lists, the define statement may be used for a name rather than the export

attribute. In this case the name does not appear in the import list but the

name may be referenced by the importer if the name is prefixed by the

imported module name. The purpose of all this is to allow the programmer

to be able to micro-manage the global scope of each individual name.

The central *MOD communication mechanism is the message. A

message may contain no data (in which case it acts as a signal), or it may

contain an arbitrary amount of data. Messages are structured, with type

checking enforced at both the sending and receiving end. Messages can be

used for any type of communication among processors, processes, and/or

procedures, within a *MOD program. Processes and/or procedures within

a single processor can also communicate through shared variables. The

advantage of using messages rather than shared variables when commun-

icating between processes is that a process can then be moved between

processors with little reprogramming required.

The *MOD definitions for processes and procedures are very simi-

lar. This allows the programmer to easily convert from one to another

(recall that each is activated by the receipt of a message) to optimize its

use. A procedure call involves less overhead (a frame on the stack) while a

process call allows concurrency. And, processes maintain individual

dynamic priority levels. Several instances of a single process may be exe-

cuting concurrently.

A processor can handle incoming messages by defining a message

handler process. It can also define message ports. A port can be thought of

as a message queue from which messages may be scanned and/or

extracted when desired. The sender is unaware of how messages are han-

dled at the receiver. The sender need not even be aware of whether the
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receiver is a port, a process, or a procedure. The only restriction is that

the receiver of an interprocessor message may not be a procedure, it must

be a port or a process. This is because if it were a procedure it would be

necessary to interrupt a process and activate the procedure asynchro-
nously. The process would then be required to wait for procedure comple-

tion. With a port or process handling the communication, the priority

scheme between processes would be used and the interrupted process

could resume based either on priority or on a wait (such as for 1/0) by the

message handler process. A port simply queues the message for later pro-

cessing.

*MOD has been installed both on bare machines (PDP-11's) and

under UNIX. The advantagc of running under an operating system,

besides sharing the machine with non-*MOD users, is that a *MOD distri-

buted program may be tested with multiple *MOD processors on a single

physical processor, and dynamic message routing may be added at a level

lower than the *MOD kernel, since *MOD itself requires that message

routing be user defined within each *MOD program.

*MOD aims to allow the programmer to structure a program so

that parts of the program can be distributed over a loosely coupled net-

work. It does not attempt to make the distribution invisible to the pro-

grammer; rather it enforces structures that simplify the distribution. But,

the programmer must understand the network structure, including the

capabilities of the individual systems and the intercommunication links,

and must structure the *MOD program accordingly. The programmer is

expected to take advantage of the ease of module redistribution to tune

and optimize the program, and to retune and reoptimize to meet changing

workloads and hardware configurations.



85

2.4.6.4 Synchronizing Resources (SR)

SR [4, 5] is a language for programming general purpose distri-

buted systems. It supports a wide variety of distributed support mechan-

isms, including local and remote procedure call, rendezvous, dynamic pro-

cess creation, synchronous and asynchronous message passing, multicast,

and semaphores. This flexibility is provided through a small number of

integrated concepts, which is intended to make the language easy to learn

and allow for efficient implementation.

The main language constructs are resources and operations.

Resources encapsulate processes and variables that they may share, while

operations provide the main mechanisms for process interaction. The

design goals of SR are ease of use, efficiency, and expressiveness. Expres-

siveness means that the language should allow the programmer to solve a

distributed programming problem in a straightforward manner. In gen-

eral, a distributed program (as compared to a sequential program) will be

more likely to shrink and grow dynamically in response to current

activity. A distributed program will always employ multiple threads of

control. Each thread is. the equivalent of a sequential program. Thus, a

distributed programming language should provide more control mechan-

isms than a sequential programming language.

SR attempts to generalize concepts that are familiar from sequen-

tial programming languages. Resources generalize modules, and opera-

tions generalize procedures. An SR program is composed of a number of

separately compiled components. There are three kinds of components:

resource specifications, resource bodies, and globals. Resources are ta e

main building block - they contain processes and data shared by the

encapsulated processes. Globals contain declarations of constants and
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types shared by resources (separate resources may not directly share

data).

A resource is actually a parameterized pattern. Instances are

created dynamically as needed. Each resource defines operations between

the processes within the resource. Phese processes may share variables.

Each resource is composed of a specification and a body. The specification

declares external components to be imported from other resources and

internal components to be exported tc other resources. The body contains

the processes of the resource, declarations of objects shared by these

processes (but not exported to other resources), and initialization and

finalization code.

The body of a resource inherits all objects declared (or imported) by

the corresponding specification. The body is parameterized; actual param-

eters are employed when an instance of the resource is created. Processes

within a resource may contain import requests that are in addition to the

import requests in the corresponding specification. This is to avoid the

overhead of large import lists which include infrequently used objects. The

disadvantage is that a resource specification cannot be used to describe

the entire external range of the resource.

A resource instance is dynamically supplied as the result of the

create statement. Arguments are passed to the newly created instance,

and the initialization code is entered. The create statement blocks only

until the initialization code of the created instance completes, after that

the creator and the new resource instance run concurrently (on the same

or separate processors).
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The creator resource may execute a destroy statement to terminate

the created instance. In this case, the finalization code of the created

instance is entered. The destroy blocks until the finalization code has com-

pleted and the space allocated to the new instance has been freed.

The creator is given full control over the created instance. By

default, the new instance is created on the same processor as the creator

unless the creator specifies an alternate machine.

Just as resources are patterns for objects (instances of the

resource), operations are patterns for actions on objects. Operations are

declared in op declarations. These can appear in resource specifications,

resource bodies, or within individual processes. Operations are invoked by

call or send statements. The target process services these invocations

through proc (procedure-like) or in (input-like) statements. Arguments

may be passed by value, result, or value/result. They may also be passed

by reference, but only within a single address space.

A call statement terminates when the service has returned results

or terminated, possibly abnormally. A send statement terminates as soon

as the parameters have been successfully stored on the target machine.

So, call is synchronous (like a standard sequential procedure call) while

send is asynchronous. Technically, send is semi-synchronous. This is

because the sender is assured that the receiver is accessible and his mes-

sage is available to the receiver, even though the sender continues with no

assurance that the message will actually ever be serviced.

An operatirn may be invoked by a call or a send (unless the opera-

tion itself enforces a restriction). As described for the create statement,

the invoker is given as much control as possible. Of course, if the invoker
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uses a send and is expecting return data, it must have provided for asyn-

chronous communication from the servicer or must periodically check for

results.

An operation may be serviced by a proc statement or by one or more

in statements. A proc is a generalizaion of a procedure declaration,

although it will actually be invoked as a process. If invoked by a send

(rather than a call) it may therefore execute concurrently with its caller.

An in statement is a list of operation commands. Each operation com-

mand is similar to a proc statement, including a parameter list, but each

operation command includes a synchronization and scheduling boolean

expression. The scope of these expressions is very powerful. The may use

current invoker paramenters, system status information, precedences

amongst themselves, etc. An invoker serviced by an in statement is

blocked until at least one of the operation commands is allowed to be

invoked (because its synchronization and scheduling expression evaluates

to true).

It can now be seen that various synchronizing mechanism are avail-

able through these few statements:

call/proc procedure call

send/proc process forking

call/in rendezvous, semaphores

send/in asynchronous message passing

Several other communication primitives are supplied to promote

efficient distributed communication. For invoked routines, the return

statement operates as expected. The use of a reply statement appears to

the caller to be a return (the caller will recieve return data and become

unblocked) but the invoked routine will not terminate. This facilitates
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conversations between processes. Another primitive, the co statement,

supports concurrent invocations. The co statement contains a list of <invo-

cation, post-processing> pairs. The execution of the co statements results

in the concurrent start of all invocations. As each invoked routine com-

pletes, the corresponding post-processing code is executed (sequentially, by

the caller). Each post-processing block may terminate normally or may

execute an exit statement. The co statement terminates immediately upon

execution of an exit statement by any post-processing block. Otherwise,

the co terminates when all post-processing blocks have terminated. A ter-

minating co statement does not terminate any still executing invocations.

They are allowed to continue concurrently until they terminate, although

the post-processing code will not be executed. This is useful in consensus

operations or in situations such as multiply replicated data where an

acceptable number of replications have been successfully performed, but

additional replications are allowed to complete even though successful

completion is not critical.

SR supports two mechanisms for distributed failure handling: invo-

cation handlers and remote monitors. An invocation handler is declared

with the resource control statements, or as part of the proc declaration.

The handler is run if an invocation error is detected by the run time SR

system, or if the invoked operation executes an abort statement. This

handler could, for example, return a status code to its invoker. Rather

than count on the invoked routine, an invoker can make use of the when

statement to monitor failures. An invoker who uses the send invocation is

unblocked as soon as his message is delivered to the machine of the

receiver; this doesn't mean that the invoked process will ever successfully

process the message. The when statement request that the SR run-time

support monitor the when parameter, which may be a physical machine,
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virtual machine, resource instance, or individual process. An asynchro-

nous failure of a (possibly remote) object results in an asynchronous call

by the SR run-time monitor to our routine declared in the when state-

ment.

SR has been implemented in a UNIX version and a stand-alone ver-

sion is under development (at the University of Arizona). The UNIX ver-

sion consists of a compiler, linker, and run-time support (RTS). The com-

piler produces C code, which is then passed through the local C compiler

to produce machine code (MC). The linker takes as input previously com-

piled resource specifications and bodies, and globals, along with a specifi-

cation list of the physical machines on which the program is to execute.

One instance of a main resource is defined, along with a main physical

machine.

Upon program invocation, the main resource is started in a UNIX

virtual address space (VM) on the main machine, which starts the RTS on

each physical machine. The main process then spawns other processes on

other VMs, local and remote. Concurrency within a VM (address space) is

not supported directly by UNIX, so it must be simulated by SR run-time

support modules in each VM. UNIX sockets are used for inter VM (and

inter-processor) communication. The RTS hides the details of the network

environment from the MC.

Notwithstanding the above descriptions, the UNIX SR environment

optimizes for efficiency as much as possible. For example, a call to a ser-

vice within an address space is serviced by a standard on-the-stack pro-

cedure call, rather than by a separately invoked process. Failure monitor-

ing can be simplified within a single machine. Processes are not dynami-

cally relocatable by the RTS. Therefore, anytime communicating processes
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are on the same VM or physical machine, efficient local system level

mechanisms may be substituted for the more general distributed

equivalent. These are hidden from the programmer.

SR implements a more general set of facilities for distributed con-

trol than does *MOD. However, the SR programmer is faced with the

need to synchronize the effects of his resources to a greater degree than

the *MOD programmer must with his processors. There is one communi-

cation mechanism in *MOD and the caller is totally unaware of whether

the invoked service is a procedure, a separate process, or even a separate

processor. SR allows for a wide variety of synchronizing mechanisms, but

the invoker and invoked service must coordinated their inter-

communication. For both languages, the programmer is given complete

control over the distribution of resources around the network, but the net-

work is treated as static during run-time. Fault handling is limited to

detection and reporting; fault tolerance is the responsibility of the pro-

grammer.

Extensions to SR have been proposed [72] to aid in the handing of

asyncbronous failures. The aim is to treat these failures as just another

class of events and to handle them as instances of any other class of nor-

mal system events. A new type of variable called binding is defined, which

in effect is bound to information from and about a remote object. The

binding variable is maintained by the RTS and can be efficiently inspected

(or monitored) locally. The binding variables can be used for synchronous

or asynchronous response to a variety of failure events.

2.5 Fault Tolerant Networks

The main purpose of the distributed hardware and software
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systems discussed thus far has been to distribute processing and data so

as to increase total throughput of distributed jobs. Fault tolerance has

basically appeared as natural features of the loosely coupled environment,

such as allowing remote replicated data and static or dynamic relocation

of processing elements, usually at the direction of some central authority

within each application job.

Any network utilizing such features can be called fault tolerant. In

some cases, however, fault tolerance is central to the network design

rather than an additional feature of a network designed for throughput.

2.5.1 Configuration Reliability

Even assuming that individual reliabilities for nodes and links

within a network are known, simply determining the reliability of com-

munications between any two nodes is difficult. In fact, even in the simpli-

fied case where only links can fail (each with some given probability) and

the failures are independent, determining the probability that any pair of

nodes can communicate has been shown to be NP-hard [281. Neverthe-

less, numerous algorithms have been proposed for computing network reli-

ability which operate efficiently on reasonable network configurations.

One such technique [1] is to take the graph representing the net-*

work and from it construct an equivalent tree. This tree will in general be

much larger than the original graph. The algorithm, which calculates reli-

ability measures as the tree is being constructed, is, of course, still NP-

hard. But, in practice it is useful for moderate sized networks. And,

improvements [2] have been developed for the algorithm which make

"better" next branch expansion choices which decrease the average run

time. Von Neumann [90] studied the effect of random failures on
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formulae. A formula is a circuit in which the inputs to each gate are

independent and the output of each gate is the input to at most one gate.

Both of these restrictions are violated by most networks. This work was

therefore generalized at IBM Almaden Research Center [25]. Two

features of the work by Von Neumann were shown to still hold:

1. The error probability for the entire network approaches 1/2 as

the failure probability for each gate approaches a limit

strictly smaller than 1/2.

2. The depth of a network must increase as the network reliabil-

ity increases in the face of individual gate failures. Depth is

the number of gates on a longest path between input and

function output.

These features seem reasonable for both formulae and networks but the

details of the relationships between individual gate reliability and network

reliability are quite distinct.

The concept of fault distance [39] is used in diagnosability and dis-

tinguishability analysis. Fault distance is a measure of the number of

simultaneous failures which can be diagnosed (a failure is detected) or

distinguished (the specific failure is identified).

If the nodes are physically located sufficiently close together a

switching network can be employed to dynamically control interconnec-

tions. Various forms of crosspoint switching networks [89] can offer vari-

ous degrees of fault tolerance through replicated busses and individually

switchable crosspoint connections.

The simple act of broadcasting to a group of distributed processes

entails a trade-off between minimization of process blocking and reliability

of message transfer. Birman and Joseph [12] define a number of
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communication primitives to implement various levels of communication

reliability.

2.5.2 Routing and the ARPANET

Routing in a network can be static or dynamic. Static routing

implies that a source node already knows the optimal route to the destina-

tion node. This route is sent along with the message, so that intermediate

nodes simply follow the message routing instructions. Each node in a

static routing environment must know the optimal route to all possible

destination nodes. There may be a central routing authority which knows

the network topology, calculates optimal paths, and sends the appropriate

data to each node. Or, each node may know the network topology and cal-

culate its own optimal path. Dynamic (or adaptive) routing does not

require that each node contain a complete routing table. Instead, what-

ever information is known about the destination is used to choose the next

node in the path. This node repeats the best next node choice, and so on

until the destination is eventually reached.

Static routing algorithms have an obvious advantage since the send-

ing node knows the next node in the optimal path. In the case of large

networks, this is clearly unreasonable. However, the effects of link and

node faults can be more easily studied and the results are applicable to

networks with dynamic routing. Dolev [23] uses the static routing environ-

ment to characterize the effect of failures on various network configura-

tions. The distance of a network is defined as follows: Pick some measure

of message transmission efficiency between two nodes. This could be hop

count, total delay assuming average line usage, etc. For each pair of

nodes, find the best path under this measure. The maximum of these

measure calculations is the distance. For example, under hop count the
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distance would be the maximum number of intermediate nodes to send a

message from a source node to a destination node along the shortest path.

By characterizing the effect on network distance of one or more failures,

we can calculate the eficiency of various network configurations during

periods of failure.

Most networks, and especially large networks, use dynamic routing.

While not guaranteed to produce the optimal path, dynamic routing allows

each intermediate node to use its current knowledge of line loading, inter-

node delay times, down nodes and lines, along with partial network topol-

ogy, to choose what it considers the optimal next route segment. It is

unrealistic for nodes in a large network to maintain all this data about the

entire network. And, even if this were possible there would be significant

timing delays so that all nodes could not simultaneously hold identical

views.

The original ARPANET algorithm [18, 54] is a distributed dynamic

algorithm. It in fact assumes that the network is small enough that each

node can determine the optimal path to the destination node. However,

the algorithm recognizes inconsistencies due to timing delays in status

broadcasts. So, even though a source node thinks it knows enough to pick

the path with the smallest total transit time, it does not predefine the

entire path. As the message reaches each intermediate node the optimal

path toward the destination is recalculated based on the network status

data currently available to that intermediate node. Each node maintains

minimum delay tables to all other nodes. Each 2/3 of a second, a node

broadcasts its updated tables to each of its neighbors. This means that

each node receives a minimum delay table from each of its neighbors

every 2/3 of a second and uses this data plus its calculated delays to its
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neighbors in order to update its own delay tables.

As the number of nodes in the ARPANET increased, the size and

frequency of delay table transmissions caused the original routing algo-

rithm to become unwieldy. Inconsistencies between delay tables in various

nodes became more pronounced, leading to increasing instances of anomo-

lous behavior. The replacement routing algorithm [55] is actually very

similar to the original. One difference is the manner in which delay tables

are propagated. Each node transmits delay information only about itself

and its neighbors. This information is broadcast to all other nodes. Each

node therefore receives these delay table updates from all other nodes

rather than just from its neighbors. But, these messages are much shorter

than the corresponding messages in the original algorithm. And, each

message contains only delays which have changed by some defined incre-

ment since the last transmission of that particular delay. So, small delay

oscillations around some average value are ignored. Each node maintains

its best path to destinations data in a tree structure, rather than a table.

Dijkstra's shortest path first (SPF) algorithm is used to generate, search,

and update the tree. This replacement algorithm retains the original phi-

losophy: each node should determine the best path to each destination,

but intermediate nodes recalculate the best path based on their current

knowledge.

2.5.3 Autonomous Decentralized Systems

The above description of the ARPANET routing algorithms shows

that the ARPANET nodes under the ARPANET routing algorithm form an

autonomous decentralized system. While we generally think of auto-

nomous systems as systems where human intervention is impossible dur-

ing system operation, such as on space missions, the ARPANET routing
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routines do in fact route around failed nodes and send required start up

and join information to nodes returning on-line. However, the ARPANET

is not a general purpose computer system.

The following discussion centers on autonomous decentralized sys-

tems which are capable of general purpose computing and are physically

close enough together to allow arbitrary network configurations. Also

important is the concept of limited repair capability. The reliability of sys-

tems with limited repair must take into consideration the existence of a

largest continouous operational time before a complete system failure [311.

For an automomous, non-repairable system, the probability distribution of

this operational time to complete system failure is a primary factor when

evaluating different system configurations.

2.5.3.1 Planar-2 Network Configuration

An autonomous decentralized system performs both processing and

control functions in a decentralized manner [37]. Since there is no master

node, the emphasis is on configuring the network so that failures cause

the least disruption possible between the non-failing components. Typi-

cally, these configurations include many independent links between the

nodes.

In a planar-2 network configuration, the nodes are logically con-

nected in a 2 dimensional plane, with horizontal and vertical links. Fig-

ure 10 shows a 16 node example. In this case, there are 8 links, with each

link connecting 4 nodes. Each of these links could actually be installed as

three separate links. In this case, nodes would require up to 4 physical

ports each. The system would become more fault tolerant since each link

would now connect only 2 nodes so a failed link would cause a lower
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overall system degridation. But, beside the extra cost and complexity of

the additional links and node physical ports, the distance of the network

(with respect to hop count) would increase from 2 to

Figure 10. Planar-2 Network Topology

2.5.3.2 Advanced On-Board Signal Processor (AOSP)

Sensor satellites were initially designed to collect data and pass it

unprocessed down to earth based receiving stations. As the data gather-

ing ability of satellites steadily increased, so did the necessary bandwidth,

to the point where it was becoming a limiting point. The solution is to per-

form the data reduction on board, thereby requiring the transmission to

earth of a much reduced volume of data. This in turn requires an increase
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in the computational power of the on-board computers, and with this

increase comes a decrease in reliability of the now more complicated on-

board systems. But, the limited space and load carrying ability of the sen-

sor satellite limits the options available for fault-tolerance.

The AOSP project [70] had as its goal to find a general solution to

this problems. That is, while allowing flexibility of choosing the specific

system for a specific sensor processing environment a general design to

address this problem was needed. It turns out that sensor processing algo-

rithms are generally easy to break into discrete steps. So, a network

approach, where one processor does some reduction and then passes the

intermediate result as a message to the next processor, turns out to work

very well in practice. The challenge then became to design a network

structure and the associated control program support for acceptable levels

3f fault tolerance to allow for planned five to ten year missions while

allowing flexibility in choices of processors and online storage.

The two main areas of research were the network structure and the

distribution of functionality of the software support among the nodes in

the network. Ideally, all processors in the network would be identical, so

that the spares could take the place of any failing processor. The design of

sensor systems allows for dropouts and short periods of lost data. This

vastly simplifies the start-up of a backup system - no attempt need be

made to recreate the lost data. So, in case of a processor failure it is

necessary only to start up the failing tasks in other similar processors and

then begin to redirect messages.

An early design decision was to "split" the processor at each node

[66]. That is, at each node there will be a standard Node Control Unit

(NCU) attached to the network and also an Application Processing Unit
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(APU) to run the sensor processing programs (see Figure 11). As previ-

ously indicated, it would be nice if the processors chosen to be the APUs

for a particular AOSP system were identical, but this is only to make it

easier to provide spares. If the APU processors are not identical then it

will be necessary to provide several types of spares. In any case, the APU

type(s) can be chosen as appropriate for the specific sensor processing

desired. The NCUs have the sole purpose of running the distributed Net-

work Operating System whose tasks are:

1. know the physical node at which each active task is currently

operating so as to be able to route messages correctly from

application to application.

2) know the primary and backup locations for each task so that

all tasks from a failed processor may be restarted.

Each node, of course, has its own clocks and power supplies so that

even though all processors must of necessity be placed in close proximity

to each other the network is in fact loosely coupled. The concept of sparing

in a loosely coupled network allows most of the processors to be perform-

ing useful work (as opposed to the triple modular redundant design) and

we even have the option of using all processors for maximum efficiency

and then in case of a failure choosing the path of degradation. For exam-

ple, we could run more tasks/processor (possibly losing some data during

high throughput periods) or we could stop some tasks thereby omitting

certain forms of processed data or we could even periodically switch

between tasks.

The other important network related decisinn is in regard to the

interconnection scheme. Multiple networks are desireable both for the

fault tolerant aspect and because of the expected large volume of message
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traffic. While a fully connected network (all point-to-point connections pos-

sible, are made - this of course requires N*(N-1) network links) has

theoretical niceties (e.g., message forwarding is never necessary regardless

of the number of node failures) there are practical limitations both on the

number of links and th. number of connections a single NCU should be

expected to be able to respond to.

The final decision was a compromise on what is called a planar-4

connection scheme [65]. Recall that in a planar-2 connection scheme the N

nodes are arranged in an 'ITx '1N array. Each node has two network con-

nections, one to a horizontal link and one to a vertical link. In planar-4

the nodes are similarly arranged, but each has four network connections.

These are the usual horizontal and vertical links, and in addition a left

ascending link and a right ascending link. The total number of network

busses is 4,- and there are 4-V nodes on each bus. The diagram for a 16

node planar-4 network is shown in Figure 11.

The NCU at each node runs a copy of the Network Operating Sys-

tem (NOS), which provides communication between the NCU and its

attached APU along with inter-node communication to the other NCUs (at

the other nodes.) The Global Operating System (GOS), which contains

Health Managers (HMs) and other facilities for testing the status of each

node, is distributed among the nodes [67] in such a way that multiple

copies of critical sections are present. As can be seen in the above

diagram, the worst possible single point failure - a node goes down and

brings all 4 attached network links down with it - leaves 12 network links

to handle the remaining 15 nodes and there will remain a distance-2

store-and-forward link (ie: one intermediate node) between any of the

remaining nodes. As network size expands beyond the above 4 x 4
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Figure 11. AOSP APU/NCU Planar-4 Connection Scheme [651

example, the large number of distance-2 store-and-forward links helps

maintain short forwarding link sequences.

In conclusion, the AOSP is a design for a highly fault tolerant (in

terms of the signal processing environment) computer system network

with minimal processor redundancy. The network bus redundancy is con-

siderable, but is limited to four connections per node control unit for any
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size network. The system is very flexible (any size network is supported

and the splitting of each node into a node control unit and application pro-

cessing unit allows the choice of the appropriate APU for the job) and can

be adapted to many environments. The limitation is that it was designed

for an environment where data dropouts are expected and tolerated,

which greatly simplifies the restart of tasks from failing processors to

spare processors in the network.
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CHAPTER III

FTM DESIGN PHILOSOPHY

3.1 Introduction

The aim of this research is to formulate protocols which provide

fault tolerance services to applications in an otherwise familiar general

purpose hardware and software environment. As the literature survey

demonstrates, hardware replication is an integral component of any fault

tolerant system. For special purpose systems where reliability constraints

greatly override hardware costs, standby or shadow systems are appropri-

ate. To combine fault tol.erance with high system utilization the approach

is to fully utilize the hardware and, as components fail or otherwise

become unavailable, to redistribute and reprioritize the workload among

the remaining components.

Tightly coupled multiprocessors and loosely coupled networks can

each be utilized in this fashion. Multiprocessors allow for more efficient

distribution of resources (processors, memory, I/O devices) among active

tasks, along with much more rapid inter-task communication. Synchroni-

zation is simplified (since system clocks are directly interconnected and

thereby can be exactly synchronized) and therefore checkpointing can be

more easily implemented. This means that recovery from many types of

error can be, and often are, automatically invoked by the operating system

in a manner totally invisible to the application tasks.

While a loosely coupled network cannot dynamically distribute

resources among tasks, it can distribute tasks among resources. This is

not nearly as efficient as the distribution within a multiprocessor. To

dynamically redistribute tasks within a network is much less efficient and
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more difficult. However, networks have many other features. One of these

is the current sub-linear cost versus computing power curve. That is, a

mainframe costs more per unit of computing power than a less powerful

machine. So, even ignoring the network feature of geographic dispersion

there is a current trend toward the use of local area networks where until

recently a mainframe would have been appropriate.

3.2 Hardware Environment

The target hardware environment for this research will be a loosely

coupled network of general purpose computer systems. The surveyed fault

tolerant networks implement high levels of fault tolerance through specific

hardare design and interconnection schemes. For example MEDUSA, a

semi-loosely coupled network, uses a single address space for all proces-

sors. Special hardware node interconnect devices hide the lack of locality

of reference, and a distributed operating system optimizes the locality

among communicating tasks.

The network node interconnection scheme can be designed to pro-

vide high levels of node to node paths. The AOSP project in particular

defined a very high redundancy of node interconnections. The emphasis on

fault tolerance in AOSP was extended to the point that each node was

devoted totally to activities which support fault tolerance, such as mes-

sage forwarding, distributed monitoring of nodes for correct operation, and

relocation of application tasks in the face of failures. A separate processor

was attached to each node to accomplish the application processing!

3.3 Software Environment

Distributed languages provide the application programmer a tool to

support fault tolerance in a standard distributed network environment. A
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higher level of support is offered by distributed operating systems, so that

the user is not restricted to a specific language. LOCUS, a prime example

of chis approach emulates the UNIX user interface. This allows the pro-

grammer to utilize a variety of computer languages in a universally fami-

liar software environment.

3.4 Layered Fault Tolerance

This research investigates the possibility of offering the services of a

distributed operating system such as LOCUS. The approach, however, is

not to offer a familiar user interface, as does LOCUS, but rather to

attempt to layer the services on top of an existing operating system. It is

with this approach, that implementations will be simplified and the

debugging period will be greatly shortened.

Users who neither need nor desire the fault tolerance services

should be able to operate as usual, with no ill effects (including no perfor-

mance degradation when the services are not accessed). The aim is to

make these services as conveniently accessible as possible.

3.5 Layered Distributed System FT Characteristics

This research involves the design of protocols to layer fault toler-

ance features upon general purpose loosely coupled networks, and to

implement these protocols. This means that a selection of services must be

chosen which, while not necessarily complete, can be implemented and

tested to demonstrate the validity of the approach. The following is a list

of fault tolerant features which will provide such an environment:

1. Disk mirroring. While minimization of hardware replication is

desirable, the rate of hard errors on disk drives far exceeds that

of processors and other components, especially in non-optimal
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physical environments. The option to mirror a disk at one or

more nodes allows for backup and immediate access to critical

data. Data is considered critical to an application if the data

cannot be reproduced in a timely fashion and the ability of the

application to perform as required is substantially reduced in

the absence of the data.

2. A general loosely coupled network. Because this research aims to

layer fault tolerance services upon an existing software environ-

ment with no additional hardware, the system must already

exhibit the ability to continue operation in the face of hardware

failures. The isolation between independently functional nodes

provided naturally by a loosely coupled network fills this

requirement.

3. A high level of node interconnectivity. This allows a high degree

of continued connectivity in the face of node and link failures.

In addition, the lower network distance results in smaller mes-

sage hop counts.

4. Node independent message routing. This is required if the sys-

tem is to continue operation in the face of node failure, such that

the location of tasks cannot be assumed to remain static.

5. Task relocation. While it is not feasible to relocate failing tasks

completely transparent to the restarted task, the objective is to

provide services to make restart as convenient as possible.

3.6 Fault Tolerant Monitor (FTM)
Thegner Clapproch is to pro- e a :ault Tolerant Monitor to run

at each node (Figure 12). Each FTM will be transparent to any applica-

tions which do not specifically access its services. These FTMs will
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communicate with each other across existing communication links

between the nodes. This horizontal distribution allows an application task

at a node to request a service from the local FTM, which in turn will

arrange for the service to be provided through the FTM on the node at

which the service is available. All server and client tasks need only regis-

ter with the FTM running on the local node.

System A System B

App App App App App

IC IC IC IC I

IF IC 'C M1 DCI

App App p

System C System D

Figure 12. FTM System Overview

3.7 Intercept Code (IC)

I vrA A tl", A,;, ,, ," of com-municaion between "he .i T±' s are of ie

concern to the applications programmer, the application must communi-

cate with its local FTM. To simplify this communication and to isolate the
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application programmer from the underlying application-to-FTM protocols,

an intercept library is provided. This library need only be linked into the

application along with the standard libraries. The applications then sim-

ply make calls to routines within this intercept library which will handle

the details of message passing back and forth with the local FTM.

The term intercept code (and intercept library) are currently inaccu-

rate. Originally, the intent was to rename standard library calls so as to

invoke FTM seivices completely transparent to the application (by inter-

cepting standard library calls and forwarding the request to the FTM sys-

tem.) This concept evolved to the current "visible but convenient"

approach, but the term intercept seems to have stuck.

3.8 Overview of Services Offered

Applications dynamically invoke FTM system services through calls

to various user interface routines in the Intercept Code. These routines

are made available to the application by the system linker, which includes

the Intercept Library in the application executable module (Figure 13).

It is the job of the Intercept Code to convert these calls from the

application to the user interface routines into IC-to-FTM protocol mes-

sages. Appendix A describes all FTM system protocols in detail. The bulk

of the fault tolerance services are provided by the local and remote FTMs,

with the Intercept Code mainly responsible for the interface between the

applications and the FTMs.

Appendix B contains a distribution library for the FTM system, con-

sisting of a Readme file followed by Makefile, sample data files, and the

complete source for the FTM and Intercept Code. The Readme file

includes a complete and detailed user interface description. What follovs
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here is an introduction to the user interface philosophy along with a

description of several FTM services central to application physical location

independence.

System A System B

Applicaltlion 1 ,Application 2

IC LIB IC LIB

' I
FTI A F'M B

UNIX j UNIX

_ _ _ _ _ ' I
TCP/IP j[ TCP/IP

<software>
........................ ........... .............................

<hardware>

a
e

physical transmission ar

medium (i.e.: Ethernet)

Figure 13. FTM System Communications

3.8.1 Connect to FTM System

The initial step an application must take is to register itself with

the local FTM by advertising a name. The local FTM will assure that this

name is unique throughout the distributed FTM system. This unique
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name serves as the identification tag for this application. Other applica-

tions which must communicate with or monitor this application may do so

through its unique advertised name. In this way, the physical location of

an application is immaterial to other applications which access it through

the FTM system.

3.8.2 Message Delivery

Applications which have advertised themselves to the FTM system

may exchange messages with each other. Since each advertised name is

unique within the FTM system, and since the FTMs keep track of the

physical location of each task which has advertised, a task need only

specify the advertised task name to which messages are to be forwarded.

The FTM system will deliver messages to the physical node upon which

the target application currently resides.

3.8.3 Task Relocation

An application which is to be restarted at an alternate node,

because of failure at the primary node, can be entered into the FTM

backup database. In the case of primary failure, the FTM system will res-

tart the application at the backup node. It is not realistic to make this res-

tart completely transparent to the restarted task, so the restarted task'

may be required to execute some reinitialization code. The new physical

location will be broadcast through the FTM system, so that all other com-

municating tasks will forward messages to the correct current node in a

transparent manner.

3.8.4 Critical Files

In the case of a node failure, data present at that node becomes
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unavailable. So, even though a task may be relocated it may not be able

to operate properly at its new node due to lack of current data. The FTM

system therefore recognizes requests from applications to define files as

critical, in which case the files are copied to the designated backup node

for that application.

3.8.5 Status

While the philosophy of the FTM system is to insulate applications

from the need to be aware of the current topology of the FTM system or

the physical location of other applications, there may be instances where

this information is useful for application level monitoring or performance

factors. Applications may therefore request various current status infor-

mation from the FTM system.

3.8.6 Disconnect from FTM System

The final step an application must take is to disconnect itself from

the FTM system by closing its connection to the local FTM, which in turn

will propagate this disconnection throughout the FTM system. If an appli-

cation terminates after connecting to the FTM system and before discon-

necting, then the FTM system will consider the termination to be abnor-

mal. In this case, the FTM system will check its restart database and, if

possible, will attempt to restart the application on its designated backup

system.

3.9 Introduction to User Interface

Appendix B include- the pro.ammer. manual for the complete

user interface. Presented here is a basic description of the minimal sub-

set of IC procedure calls required for an application to avail itself of the
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FTM services. This minimal subset consists of four routines:

adv (MyName)

from (HisName, MsgBuffer)

to (HisName, MsgBuffer)

ftmclose 0

MyName is the system-wide unique name by which the calling application

will be identified within the FTM system. HisName is the system-wide

unique name by which a communicating application is identified within

the FTM system. MsgBuffer contains a message (or the space for a mes-

sage). The message may be free-form. Header fields will be prefixed and

stripped by various components of the FTM system en route so that the

fnal delivered message is a duplicate of the original message.

3.9.1 Globally Advertise a Name

A typical application program would interact with the FTM system

by first calling adv (MyName). The IC linked into that application will

attempt to connect to an FTM running on the local node. Assuming suc-

cessful FTM connection (otherwise the IC returns immediately with an

error code), the IC will next format a message (using IC - FTM protocol)

and send it to the local FTM. The local FTM will check MyName against

its database of current advertised names. Assuming that MyName is not a

duplicate name, the FTM will then attempt to globally register MyName

by broadcasting the request to all other FTMs (using FTM - FTM proto-

col). A 2-phase commit scheme (explained shortly) is employed to handle

the case where distinct FTMs are simultaneously attempting to register

the same name. The success or failure of the global registration attempt is

then reported back to the IC by the local FTM. The IC finally returns to

the calling application with a code to indicate success or failure.
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The 2-phase cotumit protocol assures that no FTM accepts MyName

as unique until all FTMs agree. Consider the following 1-phase commit

scenario: We have 4 FTMs. Say FTM, and FTM2 simultaneously attempt

to globally advertise MyName. FTM1 sends Myname to FTM3 and FTM2

sends Myname to FTM4. FTM3 and FTM4 each reply that the name has

been registered. As the broadcasts continue, FTMI and FTM2 will eventu-

ally receive return messages indicating duplicate name, and de-register

the name from FTM3 and FTM4. There is a period of time during which

FTM3 and FTM4 each believe that MyName is a unique global name.

Actions taken during this period may be difficult or impossible to roll

back.

The 2-phase commit solution is to make the acceptance of MyName

conditional. In the above example, FTM3 and FTM4 would conditionally

accept MyName (since it is unique to each of them). But, the conditional

acceptance does not become permanent until the original sender so

instructs. The original sender, in turn, will not attempt to broadcast

instructions to make MyName permanent until it has received conditional

acceptance from ALL other FTMs. In the above example, FTM1 and FTM2

will eventually receive two duplicate name messages (one from each other

and one from either FTM3 or FTM4 ). As each of FTM1 and FTM2 receives

its duplicate name message, it instructs the other FTMs to delete

MyName rather than to make it permanent. So, at no time would any of

the FTMs consider MyName to be globally unique.

3.9.2 Receive a Message

In order to receive a message, the application program need only

execute a call to the IC routine: from (HisName, MsgBuffer), in order to

receive the oldest pending message from some application program which
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has globally advertised the name: HisName. Options to the call allow the

caller to receive the oldest message from any sender. The IC routine does

not wait for a message to arrive. Rather, it returns immediately with a

status code to indicate the length of the message received. A status code of

-1 indicates that a further code should be examined by the calling pro-

gram to distinguish between no message or some error condition.

3.9.3 Send a Message

A message may be sent to another application through the IC call:

to (HisName, MsgBuffer). A successful return code indicates that the mes-

sage has been received by the IC of the receiving application, although

this does not guarantee that the receiving application will ever get around

to processing it.

For both message operations (send and receive) neither application

needs to know the physical node on which the other resides. The FTMs

will manage the physical locations and redirect message traffic as

required.

3.9.4 Disconnect from the FTM System

A call to the IC routine: ftmclose 0 results in the caller's globally

advertised name being deleted from the system. This call is optional,

except for one case: if the calling application has been included in the

FTM system's restartable/relocatable database, and if the application

advertises a name, and if the application then ends (normally or abnor-

mally) without a call to ftmclose 0, then the FTM system will attempt a

restart of the application.
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3.10 Protocols

Despite similarities in message format and contents, there are actu-

ally three distinct protocols involved in the FTM system: an IC-to-FTM

(IF) protocol, an FTM-to-FTM (FF) protocal, and an FTM-to-IC (FI) proto-

col. A message in any of the three protocol classes follows the following

format (defined as a structure in the C language):

struct msgbuf [
char cmd[7]; /* message type */
char from; /* message from FTM or IC ? */
char status[6]; /* action taken on msg so far */
char nameto[21]; /* target of message */
char namefrom[21]; /* originator of message */
char seqnum[12]; /* message sequence number */
char errno[12]; /* error code for exceptions */
char mlen[12]; /* length of the next field */
char msg[2049]; /* data portion of the msg */

}

A general discussion of the protocol message contents is offered

here; a detailed discussion of each protocol message type appears in

Appendix A.

cmd - The protocol message type. See Table I for a brief description of

these types. They will subsequently be described in detail.

from - The message source (F for FTM and I for Intercept Code). Since

messages must sometimes be stored for later action, and since the

same message type can require different actions depending on

whether received from an application's Intercept Code or from

another FTM, the message source must be maintained until the mes-

sage has been fully acted on.

status - The current status of a message. This is always -1 (immediate

action) for a message as received. However, as mentioned above, the

message may require temporary storage while a higher priority action
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is taken, or until an action taken because of the message produces a

result. This field defines the next action required in support of the

message.

name-to - The advertised name of the application whose Intercept Code is

the final target of this protocol message.

name-from - The advertised name of the application whose Intercept

Code is the originator of this protocol message.

seqnun - The sequence number associated with this particular protocol

message. Used by the FTM system internally to assure that protocol

messages are not lost in transit and that protocol message echo-backs

are compared to the correct original message.

errno - Error return code. If a protocol message is in response to a past

protocol message which could not be handled correctly, this code iden-

tifies the error.

mlen - The length of the following (variable length) field. While the

protocol-defined fields avoid the use of non-ascii characters, the fol-

lowing field may contain arbitrary user data so that a predefined ter-

minator character does not exist. The use of this message length field

avoids the requirement that a duplication scheme be implemented to

define the end of the user data field.

msg - Variable length data. This can contain certain FTM system data,

or, for certain protocol message types it will contain user data.

The message types (CMD) and protocol classes (PC - IF for IC-to-

FTM, FF for FTM-to-FTM, and FI for FTM-to-IC), followed by a brief

description of each type, is given in Table I. Appendix A contains a

detailed discussion for each type.
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Table I. IC-to-FTM, FTM-to-FTM, and FTM-to-IC Protocols

FTM SYSTEM PROTOCOLS

CMD PC DESCRIPTION
ADV IF IC tells local FTM to advertise a name
ADV FF FTM attempts to globally advertise
ADVOK FF Phase-1 positive acknowledgement
ADVOK F1 F.T.M informs IC of successful advertise
ADVNO FF Phase-1 negative acknowledgement
ADVNO FI FTM informs IC of unsuccessful advertise
ADVOKY FF Phase-2 positive acknowledgement
ADVOKN FF Phase-2 negative acknowledgement
CLOSE IF Request to De-Advertise a global name
CLOSOK FI De-Advertise completed
KILLN FF FTM broadcasts application termination
STATUS IF IC requests status info from local FrM
STATOK FI FTM replies with status info
TO IF User msg is sent: IC -> local FTM
TO FF User msg is sent: local FTM -> remote FTM
TO FI User msg is sent: remote FTM -> IC
TOOK IF Usr msg delivered to remote IC
TOOK FF Next hop on return path
TOOK FI Final hop on return path
TONO IF User msg not delivered to remote IC
TONO FF Next hop on return path
TONO FI Final hop on return path
WHERE IF IC requests current node for some name
WHEROK FI FTM replies with node name
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CHAPTER IV

FTM IMPLEMENTATION

4.1 Introduction

In order to test the design of the FTM system protocols, it is neces-

sary to implement a distributed system employing these protocols. in this

chapter such an implenientation is described.

4.2 Implementation Over,.'w

The Fault Tolerant MAonitor software system (see Figure 12,

Chapter III) contains two distinct parts, connected only through message

communications. These are: the Fault Tolerant Monitor (FTM) and the

Intercept Code (IC). Together, they implement the required functionality.

First, there is the FTM ir, Af. One FTM will be present on each

node. These FTMs communicate with each other via messages, passing

information necessary for each to maintain a current and consistent view

of the distributed systems. The FTMs also monitor each other. An aber-

rant or failed FTM that is detected by some other FTM will be discon-

nected from the group and any eligible applications currently under the

control of the failing FTM will be relocated to a node with an active FTM.

The IC routines can be present in multiple applications on a single

node. Each IC is linked into an application, along with the standard

library routines. Each application makes procedure calls to the IC user

interface. The IC, in turn, sends and receives messages to/from the local

FTM on its node. This insulates the application programmer from the

implementation details, since the programmer needs to understand nei-

ther the IC-to-FTM protocols, the FTM-to-FTM protocols, nor the FTM-to-
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IC protocols.

4.3 Software Choices

While the protocols of this research are language and software

environment independent, it was necessary to choose a specific software

environment in which to implement the prototype. Since hardware

independence is also a goal, UNIX is an obvious choice for an operating

system. The aim is to offer some of the functionality of a fault tolerant

UNIX-like operating system, such as LOCUS, but to implement this

mostly by layering routines on top of standard UNIX. Modifications to

UNIX itself are limited to disk drivers for the support of disk mirroring.

The chosen implementation language is C. While C is promoted as a

language which is independent of the operating system, the FTM system

implementation is dependent on operating system specific calls for such

services as memory management, inter-process and inter-processor com-

munication, sub-process creation, and current environment characteristics.

This dependence precludes ease of translation for 'he FTM system from

UNIX to any non-compatible operating system, despite the choice of C as

the implementation language. Rather, C was chosen because of its power

to manipulate arbitrary data structures in a straightforward manner. A

system such as the FTM system is highly dependent on the efficient

implementation of a variety of data structures for internal use, for inter-

facing with applications which may be written in a variety of languages,

and for calls to UNIX.

4.4 Hardware Choices

The decision to implement the prototype under UNIX has been for-

tuitous. The initial hardware environment was a network of VAXes
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running ULTRIX, Digital Equipment Corporation's version of UNIX. An

abbreviated version of the initial prototype was demonstrated on this sys-

tem. Then, for convenience of access, this was ported to a network of

SUN 3/50s and 3/160s (based on Motorola 600X0 series microprocessors).

Prototype development continued and a subsequent version of the initial

prototype was demonstrated on these SUNs.

Next, the prototype was ported to hardware owned by a government

agency interested in the concept of layered fault tolerance. This hardware

is a network of SUN 386i workstations (based on the INTEL 80386 chip).

Again, prototype development continued. The final version of the initial

prototype was successfully demonstrated on this SUN 386i network.

After the successful demonstration, the government agency decided

to continue research into fault tolerance layered over UNIX. The SUN

386i network was replaced by a SUN 4 network. The SUN 4 family is

based on SUN Computer Corporation's SPARC microprocessor, which is

SUN's implementation of reduced instruction set (RISC) computer archi-

tecture. The FTM system has been hosted on this SUN 4 network and is

presently undergoing further development. This SUN 4 system is used as

the platform for testing and performance data, as presented in Chapter V.

4.4.1 Disk Mirroring

Disk mirroring has been identified as one area in which optional

hardware replication enhances system reliability and its effect oversha-

dows the cost of hardware duplication.

The aim is to allow the FTM system manager the option to main-

tain duplicate data at a specific node if deemed advisable based on factors

such as the delay involved in relocating processes should the data become
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unavailable at that node. The low reliability of disk drives (as compared to

the central system reliability) points to the disk drive as a hardware weak

link. A disk error could mean that data must be recreated or recovered

from a remote disk. Or, a hard disk error could make application reloca-

tion necessary even though the only error condition at a node is at the

disk drive.

One option is to allow the FTM system to manage all application

data. The FTM system could then maintain a mirrored file system, dupli-

cating all such data on the same disk, on another local disk, or at a

remote disk. The choice would be based on disk availability and allowable

recovery time.

A drawback to this approach is the lack of efficiency. Since the FTM

is layered on top of UNIX, this forces an extra layer between the applica-

tion and the operating system for I/O. Also, this approach deals only with

the application data. If the error occurs on other data, such as operating

system data, FTM data, or even paged memory transfers, then the FTM

data duplication is insufficient.

The approach toward data duplication at a node is to layer the sup-

port beneath UNIX, rather than on top of UNIX. The disk driver is modi-,

fled so that a write to a certain disk drive results in an additional identi-

cal write to a shadow disk drive, which is maintained as an exact dupli-

cate of the primary drive.

This disk driver modification is independent of the rest of the FTM

system and may be installed at a node ;th or vithout the intention to

run an FTM at that node. The only disadvantage is the cost of the shadow

disk drive. The advantage is that as long as the data required for
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continuous system operation and important processes is assigned to the

disk(s) being shadowed it is duplicated with negligible overhead.

The read routines in the modified disk driver normally read from

the primary disk. An error causes an automatic retry from the identical

block on the shadow disk. The primary disk is tagged as being down, with

an information message logged, and future I/O is from/to the shadow disk

only.

Since disk mirroring is layered beneath the UNIX operating system

it does violate the "easily transportable" concept. Disk mirroring was

implemented and tested along with the initial FTM partial implementa-

tion on a network of VAXes. Thus, disk mirroring was installed as a

modification to the ULTRIX disk driver for RA81 disk devices on a VAX

11/750 computer. ULTRIX is Digital Equipment Corporation's VAX imple-

mentation of Berkely 4.2 release 3.5 UNIX.

Disk mirroring has not been included in subsequent FTM imple-

mentations because a disk drive could not be devoted to a shadow role.

Since this feature is totally independent of the remainder of the FTM sys-

tem, it could be installed at any time in the future should the requirement

for duplicated data at a node arise. Disk drivers are hardware dependent

(they are dependent both on CPU hardware and disk controller

hardware), and thus the alterations made to the VAX 11/750 disk driver

for RA81 disk devices would not be easily transportable to other architec-

tures.

4.5 FTM Library

Appendix B contains a complete listing of all text files (including C

source files) which comprise the FTM system. This set of files represents
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the distribution library. From this distribution library it should be

straightforward to generate an FTM system to ruta on any "reasonable"

loosely coupled network of UNIX systems. Note that the system genera-

tion instructions in the distribution library do assume that the individual

network nodes are binary compatible. If this is not the case, then some

additional effort must be taken to generate a correct FTM system. This

subject is discussed in Chapter VI.

4.5.1 File: Readme

This file is an overview of the distribution library, with instructions

on how to generate an operational FTM system from the distribution

library, and a complete guide to the Intercept Code user interface.

4.5.2 File: Makefile

When used as input to the standard UNIX "make" utility program,

this file results in the generation of the FTM program, the Intercept Code

object library, and several FTM system utility programs.

Another file which can be used as input to the "make" utility is

Lint. In this case, the "make" utility performs a sequence of "lint" invoca-

tions. Program "lint" is a standard UNIX utility which checks for incon-

sistencies in "C" source code files which may not be detected by the "C"

compiler. Program "lint" produces a large quantity of output, most of

which is 'possible' inconsistencies which turn out to reflect the intention of

the programmer. But, there are times in which "lint" will pick out incon-

sistencies which are not the .ntention of the programmer and which would

be very difficult to isolate without the "lint" output.
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4.5.3 File: header.h

This is the only user header file present in the distribution library.

All structures and constants common to multiple FTM system modules

are defined in this file; thus the coordination of interdependence between

modules is simplified. The use of a single large header file can be ineffi-

dent, in that a single change in the file causes a recompilation of many

individual modules rather than just the few which reference the single

changed item.

The single header file also simplifies initial FTM system generation

from the distribution library. After setting the defined constants in the

header file, a UNIX "make" (described in section 4.5.2) generates the

entire FTM system.

4.5.3.1 Global Structure Definitions

The FTM system uses three main structure types. These are

defined in the header.h file, which is reproduced in Appendix B. A general

description is presented here.

The first main structure is called ftmtable. Each FTM maintains

an ftmtable entry for each FTM in the system, including itself. An

ftmtable entry maintains information about a single FTM, including node'

name, logical connection for message traffic, and status (up or down).

Since each FTM at startup will ascertain the number of other FTMs, the

storage for all ftmtable entries can be allocated in one block. This allows

these ftmtable entries to be contiguously stored, simplifying indexing.

The second main structure is called namtable. Each FTM main-

tains a namtable entry for each advertised namne in the system. A namt-

able entry contains such information as the advertised name, current
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connection status, communication path from the FTM to the advertising

application (direct or through a remote FTM), and the backup FTM for the

application. Since the number of connected applications will vary over

time, a linked list is used to organize the namtable entries.

The third main structure is called msgbuf. Each entry is an FTM

system message (described in section 3.10 and Appendix A) augmented by

two pointer fields so that the messages may be maintained in a linked list.

Each FTM maintains a list of messages which are requests for service by

that FTM. Messages which cannot be serviced immediately are held pend-

ing some enabling system event. Each application Intercept Code also

maintains a linked list of messages. In this case, the IC is buffering the

messages so that the application can receive them at some later time.

4.5.4 File: ftms.lis

This is a list of the loosely connected nodes on which the next

started F"TM system should run. It is simply a sample file, with comments

in the heading which explain how to enter node names for the farget set

of nodes.

4.5.5 File: bkup.lis

This is another sample list. In this case, the list is of complete path

names which the FTM system may use to restart applications which fail

while connected to the FTM system. Again, while this is only a sample file

it contains comments in the heading which explain how to format file

entries.

4.5.6 FTM System Source Files

This is a series of C source files, printed in alphabetic order, which
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comprise the FTM system. This includes the FTM itself, the Intercept

Code routines, and utility programs and routines. Refer to the Makefile

(described in section 4.5.2) for actual compilation, linkage, and object

library creation.

4.5.7 Test Program Source Files

Finally, the C source files with names beginning with the letter 'z'

are applications used to test the features and time the response of the

FTM system. Data from these test programs is the basis of the results

reported in Chapter V.

4.6 Multiple FTMs

In order to allow multiple versions of the FTM system to be tested

simultaneously on (possibly) overlapping collections of nodes, each FTM

system is hard-coded to a specific path for its initialization data and a

specific logical port for its FTM to FTM communications. Application pro-

grammers need only assure that the IC linked into their program matches

the running FTM system on which they expect to be operating.

In keeping with the aim of simplified system generation, these

paths are defined in the file: header.h (see section 4.5.3). Several copies of

modified distribution libraries could be maintained and as long as each

has a unique path defined in its header.h file there will be no confusion

between simultaneously running FTM systems or applications connected

to any of the FTM systems.

4.7 FTM System Startup

In order to initiate an FTM system, it is necessary to access the

directory structure for the version desired, update one file in that
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directory (ftms.lis - a list of the nodes to be included), and execute the

stand-alone program: ftmstart. This program (ftmstart) will invoke a

UNIX daemon to initiate an FTM (with program name: ftm) on each listed

system. The FTMs then interconnec and become ready to accept adver-

tised names from applications on the nodes. Before starting any applica-

tions it may be desirable to check the file: ftmbkup.lis, which contains

complete path names for applications which the FTM system will attempt

to restart/relocate in the case of an application (or node) failure.

4.8 FTM System Steady State Operation

Each operational FTM system, once started, will continue to operate

until terminated. During periods when no application is interacting with

the local FTM, the CPU overhead is very small (<< 1%) and applications

can join the system (by advertising a name) at any time. The ftmbkup.lis

file, which contains complete path names for restartable/reloca table appli-

cations, can be modified by users or applications at any time, assuming

update conflicts are avoided.

As an FTM becomes unavailable, either because it is terminated, it

fails, or its node fails, the other FTMs exclude it from the system and

attempt to relocate applications from the failed FTM to an operational

FTM. The FTM system is down only when the final FTM goes down. A

link failure could cause an FTM system partition, in which case each par-

tition would attempt to restart/relocate applications on its own. Consensus

mechanisms to avoid this anomaly will be included in future FTM system

prototypes.

4.9 FTM Logic Flow

The mainline FTM program appears in the file: ftm.c (Appendix B).
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One instance of this program runs on each of the nodes in the distributed

FTM system. Each of these FTM programs basically loops forever

responding to requests from the others, and to requests from local con-

nected applications. Figure 14 outlines these FTM actions.

4.9.1 Connect to other FTMs

Upon startup, each FTM immediately attempts to connect to all

other FTMs. Subroutine: conall (file: conall.c) is provided for this pur-

pose. Once conall has determined the number of FTMs to be included in

the current configuration (from file: ftms.lis) it can allocate the storage to

hold the consolidated collection of ftmtable structures (see section 4.5.3.1).

Next, the ftmtable structures are filled as connections to other FTMs are

completed. Since UNIX socket connections are asymmetric, each pair of

FTMs must coordinate which will originate the connection request. The

algorithm used assumes that the file: ftms.lis available to each of the

FTMs is identical in the order of nodes included. So, if the FTMs are not

sharing the file through a network file service (NFS) then the copies of the

file that are used must not deviate in order of contents.

4.9.2 Accept IC Connections

Assuming that subroutine: conall has successfully connected to all

other FTMs within the timeout period, the FTM now enters its main pro-

cessing loop. The initial step within this loop is to check for pending con-

nection requests from applications on the local system. In the asynchro-

nous UNIX socket environment, the FTM acts as the server while applica-

tions act as clients, requesting connection to the FTM a need.l Unlike

the FTM-to-FTM connections, where the connection topology is pre-

ordained by the contents of the file: ftms.lis, each FTM does not know nor
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care which applications will want to connect to it. So, in this case it must

be the application which initiates the connection request.

As each pending connection from a local application is accepted, the

FTM allocates space for a namtable structure (see section 4.3.5.1) which

will hold information about the application. This allocated structure is

linked onto a list (using subroutine: namtolist) which contains one namt-

able structure for each connected application (local and remote)

throughout the FTM system. Since this information must be available

throughout the FTM system (for message routing and application restart)

other FTMs must eventually create similar namtable structures for their

own internal use.

The connection request contains minimal information, which does

not include the advertised name, so the propagation of the namtable infor-

mation throughout the distributed FTM system must be delayed until it

becomes available to the local FTM. The first message over the just

opened communication socket will be a request from the application's

Intercept Code to advertise a name. At that time, the skeletal namtable

structure can be completely filled in and the information propagated to

other FTMs.

4.9.3 Read Messages from other FTMs

The next step in the main FTM loop is to read any pending mes-

sages from other connected FTMs. This is accomplished by a call to Sub-

routine: ffget (file: ffget.c). While a minor amount of preprocessing is per-

formed for certain protocol message types. the main function of ffget is to

queue any messages read. First, a structure msgbuf is allocated (see sec-

tion 4.5.3.1). The preprocessed message is augmented into this allocated
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msgbuf structure, which is then added to the linked list of messages.

This step also serves as a check on the current connectivity of other

FTMs. If a remote FTM is found to no longer be accessible, then the

ftmtable structure for that unavailable FTM is modified to indicate this

status. In addition, subroutine: ftmisdown (file: ftmisdown.c) is called to

handle the failure.

4.9.4 Read Messages from Connected ICs

After reading any pending messages from other FTMs, the local

FTM next reads any pending messages from local connected applications.

Subroutine: ifget (file: ifget.c) performs this function. Again, there is a cer-

tain amount of preprocessing involved, but the main purpose of ifget is to

queue the messages read onto the linked message list.

The continued connectivity of each connected application is checked

during this step. Recall that if an application becomes unconnected after

advertising a name but before issuing a request to cloge, then that appli-

cation is considered by the FTM system to have terminated abnormally.

In this case, the ifget subroutine will construct and queue a KILLN FTM-

to-FTM class message, which will eventually be propagated to the other

FTMs informing them of the abnori.ial termination. If appropriate, the

FTM at the backup system will then adtempt a restart.

4.9.5 Handle Pending Messages

The final processing step within the main FTM loop is to "handle"

the messages which have been queued onLo the message list. Sulbroutine:

msghndl (file: msghndl.c) is called at this point. The msghndl subroutine

scans through the message list, searching for messages which require
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immediate action. The status field of each message defines the next action

(if any) to be taken for the processing of that message (see section 3.10).

As msghndl finds a message which requires processing, it calls the

appropriate message "handler" subroutine. These are all named hndlxxxx,

where xxxx is a reasonably mneumonic string, and can be found in Appen-

dix B (in file: hndlxxxx.c).

Table II provides a list of the hndlxxxx -subroutines, along with the

associated types of message. The message types are listed as tuples:

<xxxx,y>, where xxxx is the CMD message field and y is F for an FTM-to-

FTM class message or I for an IC-to-FTM class message. Both elements

are required to uniquely identify a message type (see section 3.10).

Table II. FTM Message Handling Routines

FTM MESSAGE HANDLING ROUTINES

ROUTINE MESSAGE TYPES HANDLED

hndladvf <ADV,F>
hndladvi <ADV,I>
hndladvok <ADVOK,F>, <ADVNO,F>
hndladvoky <ADVOKY,F>, <ADVOKN,F>
hndlclose <CLOSE, I>
hndlkilln <KILLN,F>, <KILLN,I>
hndlstatus <STATUS,F>
hndlto <TO,F>, <TO,I>
hndltook <TOOK,F>, <TOOK,I>, <TONO,F>, <TONO,I>
hndlwhere <WHERE,I>

It is significant that msghndl scan the message list in order. Cer-

tain of the hndlxxxx subroutines use this order to queue messages when

future processing must be accomplished in that sequence.

The actions taken by the hndlxxxx subroutines will be described

briefly. The C code in Appendix B may be referred to for further details.



134

The hndladvf subroutine acts on ADV messages from other FTMs.

The other FTM has received a request from one of its local applications to

advertise a name, so that FTM is attempting to find out if the name is

unique throughout the distributed FTM system. The hndladvf checks to
see if the name has been used locally. This could happen, for example, if a

local application was in the process of attempting to advertise the same

name. In this case, the hndladvf subroutine will construct an ADVNO

message and return it to the remote FTM.

Assuming the name does not conflict, the hndladvf subroutine will

create a namtable structure for the remote application, and link this

structure into the list of system-wide names. However, the status in this

entry will indicate that the entry is tentative, since only phase 1 of the 2-

phase commit protocol has been completed. Phase 1 (section 3.9.1) only

assures that the name is unique to the remote and local FTMs. Phase 2 is

required to assure that the name is unique throughout the FTM system.

The hndladvi subroutine acts on ADV messages from local applica-

tions. When the application calls the adv Intercept Code user interface

routine (as will be described in the next section) two actions occur. First,

the IC attemps to connect to its local FTM, as described in section 4.9.2.

Next, the IC sends to its local FTM one of the <ADV,I> messages. The

hndladvi subroutine checks to see if the advertised name is unique to it.

If not, hndladvi constructs an ADVNO message and sends it to the

requesting IC.

If the advertised name is unique to the local FTM, then the local

FTM enters phase 1 of the 2-phase commit protocol. It constructs an

FTM-to-FTM ADV message and sends a copy to each of the other FTMs.

The <ADV,I> message is then altered so that its status field indicates the
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partial processing.

The hndladvok subroutine acts on ADVOK and on ADVNO mes-

sages from other FTMs. As described above, these messages are received

as the result of phase 1 of an attempt by this FTM to advertise a name. If

1 or more ADVNO messages are received for a particular name, then at

least 1 remote FTM has rejected the name. So, the hndladvok subroutine

constructs an ADVNO message and sends it to the requesting IC. The

application will as a result be informed that it cannot advertise that par-

ticular name at this time. The hndladvok subroutine also constructs an

ADVOKN message, which it sends to each remote FTM. This is the nega-

tive phase 2 message, telling remote FTMs that the advertise has failed

and that the preliminary namtable structure entries for this name should

be discarded.

If an ADVOK message has been received from each of the remote

FTMs, then phase 1 has completed successfully. In this case, the hndlad-

vok subroutine constructs an ADVOKY message, which is sent to all

remote FTMs. The name is now accepted by all FTMs as having been

successfully advertised throughout the distributed FTM system.

The hndladvoky subroutine handles ADVOKY and ADVOKN mes-

sages from other FTMs. These represent the affirmative and negative

phase 2 acknowledgements, respectively, as described above. The action

taken by hndladvoky is to complete (ADVOKY) or delete (ADVOKN) the

preliminary namtable structure entry for the particular advertised name.

rV1_L -47.,,.1- .. .. O,.. .* ^4,,,,,.f 1"T nC1 -essa- s. rl, ... ...

Le1 d Il1(1L& sULJLUULIne takes care o CLS esaO. TheseV ae

requests from the IC of connected applications wishing to disconnect from

the FTM system. The actions taken by hndlclose are to delete the
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appropriate namtable structure entry, construct a KILLN message to be

broadcast to the other FTMs, and to contruct a CLOSOK message to

return to the requesting local application. The KILLN message includes

an indicator (in the status field) to report that the application termination

should be treated by the FTM system as "normal." That is, no attempt to

restart the application should made.

The hndlkilln subroutine acts on <KILLN,F> and <KILLN,I> mes-

sages. It should be noted that all KILLN messages are actually originated

by FTMs, never by Intercept Code. However, if the KILLN is the result of

a CLOSE request from some application then the status field is set to 'I'.

A status field value of 'F' indicates that the KILLN was originated by an

FTM as the result of an abnormal application termination.

In the case of a normal application termination, the local namtable

structure entry for that application is deleted. Any pending messages des-

tined for that application are deleted from the message list. If the termi-

nation was abnormal, then in addition to the above actions a

restart/relocation is attempted. This is controlled by information saved

from the just deleted namtable structure entry, defining the current

backup system, and from the file: bkup.lis which contains path informa-

tion for applications which are eligible for restart.

The hndlstatus subroutine responds to STATUS request messages.

The action taken is to construct a STATOK message, fill in status infor-

mation from the local FTM database (the ftmtable structures for current

FTM system information), and send the STAKOK message back to the IC

of the requesting application.
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The hndlto subroutine acts on TO messages, both <TO,F> and

<TO,I> message types. In either case, the purpose is to forward the mes-

sage along to the next hop in the path from the sending application to the

intended receiving application. A sending application can route a user

message to a receiving application by specifying the advertised name of

the receiver (swection 3.9.3). The user message is encapsulated into a

<TO,I> message from the application IC to the local FTM. The local FTM

then determines whether the receiving application is also local. If so, then

the user message can be delivered directly. Otherwise, it must first be for-

warded to the appropriate remote FTM, from where it can then be

delivered to the receiving application.

When hndlto processes a <TO,I> message it constructs a <TO,F>

message from it. If the receiving application is local, the <TO,F> message

is sent directly to it. If not, the <TO,F> message is instead sent to the

FTM local to the receiving application. When hndlto processes a <TO,F>

message the result is similar, except that since the message has been for-

warded from a remote FTM the receiving application will be local. How-

ever future, more general, versions of the FTM system will include FTMs

which are not fully connected. In this case a message may pass through

intermediate FTMs, so a <TO,F> may need to be forwarded to another,

FTM.

The hndltook subroutine handles TOOK and TONO messages from

both Intercept Code and remote FTMs. In the case of TOOK messages,

the user message imbedded in a TO message has been successfully

delivered to the Intercept Code of the receiving application. The IC has

queued the message, so the receiving application can read it whenever it

so desiresr. The positive acknowledgement (the TOOK message) is then
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routed back to the sending IC. At each step, the seqnum field (message

sequence number) and user message portion are compared with the saved

TO message in order to assure accurately deliverd data..

Similarly, a negative acknowledgement (the TONO message) is

routed back to the sending IC. In this case, the sending application is

informed that the message was not delivered successfully, with a reason

code in the errno field of the TONO message.

The hndlwhere subroutine is very similar to the hndlstatus subrou-

tine; hndlwhere responds to application WHERE requests while

hndlstatus responds to application STATUS requests. In the case of

hndlwhere, a WHEROK message is constructed. This message includes

data about a specific application somewhere in the FTM system. As with

hndlstatus, the information is obtained from the FTM system data within

the local FTM. The WHEROK message is then sent to the IC of the

requesting application.

4.9.6 Loop Control

Because the FTM is interrupt driven, it sleeps (i.e., suspends itself)

during periods when there are no pending useful actions it can take. The

algorithm used is as follows: if during the current pass through the loop

any actions have been taken (accepts, FTM messages, IC messages,

queued messages handled) then this is considered a high activity period

and the loop is immediately re-entered. Some action later in the loop dur-

ing the handling of messages may have enabled another pending action.

If no actions were taken during the current pass through the loop,

then the FTM will sleep until it has a pending message receipt or connec-

tion request. But, first it will send a signal (i.e., an inter.rupt) to each
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local connected application to whose Intercept Code the FTM has sent a

message since the previous signal was sent. The purpose of this signal is

to force the IC to immediately queue these messages and to construct a

response back to the FTM. In this way, even though the application may

be busy processing and may not try to read the message for some period

of time, the FTM will not have to wait for that period of time before it

receives an acknowledgement that the IC has received the message. This

reduces delays in the FTM system, since the message received ack-

nowledgement (the TOOK message) can make its journey back to the

sending application without waiting for the receiving application to actu-

ally issue the request to read the message.

After the FTM has been awakened, either through a message

receipt, a connection request, or the expiration of a timeout period, it re-

enters the main loop. If no actions are taken during this pass through the

loop then the FTM will immediately begin another sleep period. Con-

stants to define the sleep timeout period and many other FTM and Inter-

cept Code timing factors are defined in file: header.h (see section 4.5.3).

4.10 IC Logic Flow

Unlike the FTM, the Intercept Code is not a program. Rather, it is

an object library of routines designed to be linked into application pro-

grams. The full user interface provided by the IC library will not be

described here - refer to Appendix B, file: Readme, for full details. What

will be described here is the logic flow through the Intercept Code in

response to application calls to the user interface entry points.

For most of the user interface IC services, a message must be con-

structed and sent to the local FTM. For these services, the logic flow is as



140

follows: First, signal interrupts from the local FTM are disabled. This is

because the IC will be modifying the message list, and the interrupt

handler routine also modifies this list as it links received messages onto

the list. Before control is returned to the calling application, the signal

interrupts will be re-enabled.

After disabling signal interrupts, the IC user interface routine next

validates the user supplied parameters. Assuming successful validation,

an appropriate message is constructed and sent to the local FTM.

All messages sent from the IC to the local FTM require a message

in response from the local FTM. In some cases, the local FTM may con-

struct the return message immediately upon processing the message from

the IC. In other cases, the local FTM must first communicate with one or

more remote FTMs. Regardless, the IC will await a response from the

local FTM before returning to the calling application. Recall from section

4.9.5 that a remote IC responds immediately to a TO message (user data

message) without waiting for the target application to actually read the

message. This is to minimize the delay before the sending application

regains control after it issues the TO message.

After the response has been received from the local FTM, indicating

successful or unsuccessful completion of the request, control is returned to

the calling application along with a code to indicate success, or a reason

for failure. A timeout while waiting for a response from the local FTM is

treated as an FTM communication failure, which currently aborts the

application.

The only current user interface entry point which does not result in

a message being sent to the local FTM is a from call. This call is made by
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an application when it wishes to read a message from another application.

An optional message selection criteria may be specified by the application,

or it may simply ask for the oldest available message. In either case, the

Intercept Code searches its message list to select a message (if one is

available) to return to the requesting application. Again from section 4.9.5,

the IC queues messages upon arrival. So, the from call simply finds a

message already on the message list, dequeues it, and passes it back to

the calling application. Even if no message is immediately available from

the message list, the IC returns to the application; in this case a return

code indicates the absence of an appropriate message.

The signal interrupt handler routine in the Intercept Code is called

getmsgs. This routine simply reads pending messages from the local FTM

and adds them to the IC message list. Besides its use as a signal inter-

rupt handler, getmsgs is also called directly by various routines within the

IC when a new incoming message is expected. There is no conflict with its

use as an interrupt handler routine, since signal interrupts have been dis-

abled within the affected IC routines.

4.11 Example of an FTM Session

An example of a very short FTM session between two applications

on a 2-FTM system is presented in Figure 15. Actually, many of the

actions could be occurring simultaneously, but they have been shown with

time separation to emphasize the cause and effect nature of some of the

message protocol types.

Figure 15 should be read in time-increasing order from top to bot-

tom. It represents the following actions between applications 1 and 2

(APP1 and APP2 ) and FTMs A and B (FTMA and FTMB):
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Figure 15. Small Sample FTM Session

1. APP1 attempts to advertise a name. An ADV message is sent

from APPI to FTMA. Next, FTMA sends an ADV message to each

remot V.T.V.L, wnch in our example is just one remoLe FTM:

FTMB. FTMB completes phase 1 of the 2-phase commit protocol

by returning an ADVOK message to FTMA. Since FTMA has
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received a positive phase 1 acknowledgement from all remote

FTMs (all one of them in our example), the phase 2 positive ack-

nowledgement is broadcast: FTMA sends an ADVOKY message

to all other FTMS, which in our example is FTMB. At the same

time, an ADVOK message is returned from FTMA to APP1 which

informs APP1 that .he name has been successfully advertised

throughout the distri)uted FTM system.

2. APP 2 attempts to advertise a name. It is assumed that this name

is different from the name advertised by APP1 , so that this

second advertisement will also be successful. The flow of mes-

sages can be seen to parallel that of step 1.

3. After both APP1 and APP 2 have successfully advertised their

names, APP1 next sends a user message to APP2. It can be seen

that APPI sends a TO message to FTMA, FTMA responds by send-

ing a TO messsage on to FTMB, and FTMu sends a corresponding

TO message to the target application: APPB. Once the Intercept

Code within APP2 has received the TO message, it constructs a

TOOK message which it returns to FTMB. FTMB sends the

TOOK message on to FTMA, which finally sends the TOOK mes-

sage to the user message originator: APP1 .

4. APP, decides that it would like to know the status of the distri-

buted FTM system. So, APPI sends a STATUS message to its

local FTM, FTMA. FTMA looks up the information in its data

base, and returns a STATOK message with the requested infor-

mation to APPA.

5. APP2 decides that it would like to know where APPI is located.

So, APP2 sends a WHERE message to its local FTM, FTMB.

FTMB looks up the information in its data base, and returns a
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WHEROK message with the requested information to APP8 .

6. APP2 sends a user message to APP1 . The flow of messages

corresponds to the flow described in step 3, when APP, sent a

user message to APP2.

7. A CLOSE message is sent from APP2 to FTMB. This indicates

that APP2 wants to disconnect firom the FTM system. FTMB

responds by returning a CLOSOK message to APP1 and by

broadcasting an appropriate KILLN message to the other FTMs

in the distributed FTM system, which in this example is just

FTMA.

8. Similarly, APP1 decides to disconnect from the distributed FTM

system, so it also sends a CLOSE message to its local FTM:

FTMB. The flow of messages follows the description of the

CLOSE request issued by APP 2.
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CHAPTER V

FTM EVALUATION

5.1 Introduction

An evaluation of the implemented FTM system has two general

purposes: First, it is necessary to validate the implementation. It must be

shown that the FTM system processes user requests according to the user

interface definitions. The various protocols must have been implemented

in such a way that the distributed FTM system remains consistent in the

presence of sequential and concurrent FTM system actions.

Second, the FTM response timing to the user requests must be

quantified. Since the FTM is layered on top of the UNIX operating system,

it can be expected that there will be a performance cost associated with

accessing FTM services versus hard-coding the actions into user applica-

tions. A quantification of these performance costs is necessary to allow a

trade-off decision between the convenience and offered fault tolerance

versus the quicker response times achieved by bypassing the FTM system

and formatting requests directly to the operating system.

5.2 Feature by Feature Comparison

As stated, there will always be a run-time performance cost associ-

ated with the use of FTM system services. These can be quantified and

are so described in the following sections. The convenience and fault toler-

ance aspects of the services offered by the FTM system are not so easily
. *111 . * . .1 0 * • .

quantifea, but wil be aiscussea in relation Lo the raw equivalent service

offered by the operating system.
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The fault tolerance services of the FTM consist of automatic user

program restart and redirection of messages so that the physical node at

which the message target application currently resides is transparent to

the message sender application. As will be seen from the results of perfor-
mance tests, program restart on an alternate node takes on the order of
two seconds from the detection of the program abort. Even if a (human)

operator were assigned to stare continuously at a console (or respond

immediately to a bell) it is unlikely that a restart could be accomplished in

this time frame. Plus, the application would have had to pick its own

backup node and assure that current critical data would be available in

case of an abort. All of this would have to be accomplished through some

other software layered upon the operating system which, in effect, would

simply duplicate the corresponding FTM service. So, these FTM services

(or equivalent) are essential for time-critical application remote restarts.

Likewise, if automatic message redirection were absent, then the

relocated application would need to contact all communicating applica-

tions. This means that it must know at which node each of these

processes currently resides. But, since application self-relocation is

assumed possible, there must be a mechanism by which an application

can "look up" the current location of other applications. Again, these are

duplications of FTM services. So, applications which need FTM-like

remote restart and message redirection services cannot obtain them

directly from UNIX; there must be some software entity to provide them.

This is not to say that a system less general that the FTM could not be

more efficiently implemented, but rather to propose that some layered

software must be present to provide these services.
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Even if it is assumed that applications ignore the fault tolerance

offered by the FTM services, the transparent message delivery services

can be very useful. There is quite a convenience in not requiring a

predetermined distribution of communicating applications across the

nodes of a distributed system. Message paths (called sockets) in UNIX are

asynchronous. This means that a pair of applications, in order to create a

socket connection, must each execute a distinct series of UNIX socket ser-

vices calls. And, the application which is the client must know the physi-

cal location of the other application (the server). Actually, the server

should also know the physical location of the client. This is because if they

happen to be located on the same node, then a UNIX (single system)

socket may be used rather than an INET (inter-net) socket. INET sockets

work on a single system, but are less efficient than UNIX sockets. The

FTM system handles all of this for the application. Only a single call to

the adv user interface routine is required to create any number of data

path connections to any number of other local and remote applications.

In the case where application relocation is not needed, however,

applications can certainly bypass the FTM: they can simply all be aware

of the location of each other so that messages are sent directly. Program

parameters (or data files) could be used so that as each program starts up

it accesses the location data and creates its message data paths (sockets)

accordingly. One approach might be to produce a Location-Connection

Code library (LCC), similar to the Intercept Code library (IC) of the FTM

system. The advantage of the LCC would be that once an application has

called its LCC to set up the data paths, message transfers would be direct

with no overhead above the normal UNIX message transmission delays.

This would be a reasonable approach for a static distributed application

system.
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Besides relocation and node-independent message delivery, the

other services offered by the FTM system are FTM-specific and would be

immaterial in a non-FTM environment. Copying of critical files to a

backup system is vacuous in the absence of a backup system. The two

informational IC user interface requests: ftmstatus to get a snapshot of

the current status of the distributed FTM system, and ftmwhere to inquire

about the location and backup system of some connected application,

would have no use in the absence of the FTM. There is no FTM status,

there is no application backup system, and each application would already

know the static location of all other applications with which it might want

to communicate. Finally, ftmclose would be unneccessary since there

would be no FTM connection to close down.

5.3 Validation of Implementation

The validation of the FTM system is threefold: First, Conditional

compilation switches provide extensive debugging output which has been

examined to assure that the FTM system handles concurrent events in a

consistent manner. Second, the FTM system has been used at Texas A&M

University by several groups of programmers to help develop distributed,

fault tolerant, application systems. And third, the performance evaluation

tests described in later sections have been run separately and con-

currently on distributed FTM systems consisting of one through 16 nodes.

The FTM systems have run continuously for up to several days at a time,

varying between supporting multiple applications and idle time, with no

apparent ill effects from the "bombardment" of calls to all interface rou-

tines from these performance evaluation tests.

The performance evaluation tests, while designed specifically to

gather timing statistics for various FTM services, also serve to validate
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the interface routines. All user interface calls are utilized during this

sequence of tests, and invalid handling of any of these calls would be

detected.

The protocol messages occurring during "normal" system operation

are also exhaustively exercised by the test programs. "Abnormal" system

events, such as the failure of an application, an FTM, or an entire node,

have been externally initiated. The response of the FTM system has been

examined both in terms of the protocol messages generated and of the

effect on the connected applications.

5.4 Baseline Performance/Reliability

This section presents the results of a series of performance tests.

The physical distributed system consisted of 16 SUN 4/60 Sparc Stations

running SunOs Release 4.0.3c UNIX and configured as shown in Figure

16.

The physical distributed system consists of four sets of four nodes

each. Within each set, the four nodes are connected by a single ethernet.

The four sets are then interconnected through a dedicated system inter-

face unit (SIU) which forwards message packets between the sets of

nodes. This gives each node the appearance of being directly connected to

all 15 other nodes. There is, of course, a transmission delay if the sending

node and receiving node are not within the same set. For a single packet

(not more than 1024 bytes) this delay is approximately one milli-second.

In any case, the following tests which require four or less nodes have been

perfonrmed ,xrthikn a singyle et. Tha nnllu avranftnn ;c+ tf +0--f t wb arp

the timing is dependent on the number of nodes on which the distributed

FTM system is currently running.
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Figure 16. Distributed System for Performance Tests

It should be noted that each and every test has been repeated three

times. These trials were at different times and on separate sets of nodes.

Rather than attempt to extract .one set of results from the three sets of

test output, all three sets will be reported. While every attempt has been

made to run these tests during periods of low system activity, the timing

statistics do include some level of interruptions for system overhead func-

tions.

The code for these tests appear in Appendix C. Besides showing the

source for the results presented, these tests can also be used as examples

of application programs which utilize FTM services.
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In all of the following tables, LOOPS refers to the number of repeti-

tions performed by each run of a particular test. All times are in milli-

seconds. (The resolution of the UNIX timing services employed are one

mifli-second).

5.4.1 Advertise a Name (adv)

Program zaduclose repeatedly advertises a name throughout the

FW system, and then disconnects from the FTM system (via a call to

ftmclose) so that it can advertise again. Statistics are maintained for both

the adv (Table III) and the ftmclose calls. Because the adv is sensitive to

the number of nodes in the system (since the local FTM must employ a 2-

phase commit protocol with all otber nodes) it is tested in various confi-

gurations, from 1 system (where no commit protocol is employed) to the

full 16 system configuration. Since the other FTMs will act in parallel on

the commit protocol requests, little increase in delay is expected as confi-

gurations change from 2 to 16 nodes.

The average time for an adv jumps dramatically as the size of the

distributed FTM system increases from 1 to 2 nodes, then stabilizes for

further increases. In any case, an application normally advertises only

once, so the 200 milli-second delay would generally be negligible and could

be considered part of the normal application loading and start-up time.

5.4.2 Disconnect from FTM (ftmclose)

As with the adv call, the ftmclose is generally called once by an

application, if at all. And, this is usually when an application is about to

terminate. Table IV presents timing statistics for the ftmclose call. These

statistics were gathered by test program zadvclose while it was gathering

the adv statistics.
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Table III. Timing Data: adv

TIME TO ADVERTISE THROUGHOUT FTM SYSTEM

LOOPS NODES MAX MIN AVG STDEV

5000 1 70 9 13 2
5000 1 76 9 12 2
5000 1 82 9 13 2
5000 2 250 33 190 5
5000 2 249 38 191 4
5000 2 243 33 191 4
5000 4 303 57 186 11
5000 4 305 56 187 9
5000 4 326 56 188 8
5000 8 864 94 187 23
5000 8 479 95 230 21
5000 8 494 92 209 29
5000 16 662 155 240 28
5000 16 535 152 267 31
5000 16 557 166 277 36

Table IV. Timing Data: ftmclose

TIME TO DISCONNECT FROM FTM SYSTEM

LOOPS NODES MAX MIN AVG STDEV

5000 1 68 5 7 1
5000 1 69 5 7 1
5000 1 12 5 7 1
5000 2 14 6 9 1
5000 2 66 8 9 2
5000 2 72 8 9 1
5000 4 127 11 13 3
5000 4 131 11 13 3
5000 4 88 10 13 2
5000 8 140 13 18 4
5000 8 74 17 20 2
5000 8 140 19 21 3
5000 16 168 25 28 5
5000 16 133 22 30 6
5000 j 16 148 27 31 4
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5.4.3 Obtain FTM Status Information (ftmstatus)

Test program zstatus repeatedly calls the ftmstatus user interface

routine. This call returns information about the current status of the dis-

tributed FTM system (Table V). Because the local FTM retrieves the

status information from its internal tables, the timing is not dependent on

the number of nodes in the FTM system. Currently, the status informa-

tion is returned in two integers (64 bits).

Table V. Timing Data: ftmstatus

TIME TO OBTAIN FTM STATUS

LOOPS MAX MIN AVG STDEV
10000 87 6 9 2
10000 101 7 9 2
10000 58 6 9 1

5.4.4 Obtain Node of an Application (ftmwhere)

Test program zwhere repeatedly calls the ftmwhere user interface

routine. This call returns the current and backup nodes for a specific

application (Table VI). As with the ftmstatus call, the local FTM obtains

the information from its internal tables. Thus the timing is not dependent

on the number of nodes in the FTM system. The information returned is

based on the advertised name passed as a parameter to the call.

Program zdummy, running on some remote node, serves as a

dummy target application about which location information is requested.

Program zdummy does nothing more than advertise a name, and then
receive (and delete) an messages which mry be sent- t+ ; Itis a pSasY;c

partner to any active statistic gathering program.
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Table VI. Timing Data: ftmwhere

TIME TO FIND APPLICATION NODE DATA

LOOPS MAX MIN AVG STDEV

10000 86 7 10 2
10000 107 7 10 2
10000 84 7 10 2

5.4.5 Send a User Message (to)

Since sending messages is the FTM supported activity likely to

comprise the overwhelming majority of FTM requests by a typical applica-

tion, timing statistics for the user interface routine which sends messages

(to) will be more detailed. The data covers a range of user message sizes,

and is reported for the case where the sender application and target appli-

cation reside on the same physical node, and then is repeated for the case

where they reside on different physical nodes. In addition, data is

reported for a pair of applications communicating directly rather than

through the FTM system. Again, there are separate statistics for the case

where the application pair reside on the same physical node, versus distri-

buted applications.

Test program zto sends a number of messages of a given size to pro-

gram zdummy. Program zdummy simply discards the message. The

number of messages and message size are parameters to zto.

The data for the case where an application sends messages to a tar-

get application which happens to reside on the same physical node is

given in Table VII. The time reported for each message represents the

total time of the following individual steps:

1. The sender application calls to which results in the message

being sent to the local FTM over a UNIX socket.
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2. The local FTM discovers that the target application is on the

same node, so it forwards the user message to the target

application over a UNIX socket. The local FTM then sends a

UNIX signal (interrupt) to the target application.

3. The Intercept Code within the target application obtains con-

trol (due to the signal) and receives the user message. The

message is queued so that the target application can read it

(with a from user interface call). The target application IC

then constructs a response message and sends it to the local

FTM over a UNIX socket.

4. The local FTM receives the response message from the target

IC and forwards it to the sender application over a UNIX

socket. Assuming the response message indicates that the

user message was delivered correctly, the IC in the sender

application returns from the to call with a "success" status.

The time reported for each to is actually the time for a total of four

message hops, all over UNIX sockets. The entire message is sent over

each hop, including the return path, so the response message can be com-

pared with the original user message.

As expected, the delay increases with message length. But, the

increase is much less than proportional, since there is an "almost fixed"

delay involved both in FTM processing and UNIX processing for each mes-

sage. Notice that the FTM system allows zero length user messages. In

this case, the target application will be able to read the message, but of

course the length will be returned as zero. This could be useful, for exam-

ple, as an "I'm still alive" message where actual data is not needed. The

FTM system will provide the target application with the advertised name
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of the sender.

Table VII. Timing Data: to (Single Node)

TIME TO SEND DATA (SINGLE NODE)

LOOPS SIZE MAX MIN AVG STDEV

5000 0 90 15 19 2
5000 0 124 17 19 2
5000 0 91 17 19 2
5000 100 93 21 21 2
5000 100 122 21 22 3
5000 100 97 21 22 2
5000 512 95 22 23 2
5000 512 126 22 24 3
5000 512 95 22 23 2
5000 1024 98 25 26 2
5000 1024 128 25 26 3
5000 1024 97 25 26 3
5000 2048 104 31 32 3
5000 2048 132 31 32 3
5000 2048 106 31 32 3

The data for the case where an application sends messages to a tar-

get application which happens to reside on a different physical node is

presented in Table VIII. This increases the number of steps necessary to

accomplish the transmission:

1. The sender application calls to which results in the message

being sent to the local FTM over a UNIX socket.

2. The local FTM discovers that the target application is on a

different node, so it forwards the user message to the FTM

on the target node over an INET (internet) socket.

3. The FTM on the target node forwards the message to the tar-

get application over a UNIX socket. The target FTM then

sends a UNIX signal to the target application.

4. The Intercept Code within the target application obtains
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control (due to the signal) and receives the user message. The

message is queued so that the target application can read it

(with a from user interface call). The target application IC

then constructs a response message and sends it to its local

FTM (the target FTM) over a UNIX socket.

5. The target FTM receives the response message from the tar-

get IC and forwards it on to th.. sender FTM over an INET

socket.

6. The sender FTM receives the response message from the tar-

get FTM and forwards it on to the sender IC over a UNIX

socket. Assuming the response message indicates that the

user message was delivered correctly, the IC in the sender

application returns from the to call with a "success" status.

Note that this sequence of steps is very similar to that of the case

where the sender and target applications were on the same node, except

that now there are six message hops: the same four UNIX socket message

transmissions and an additional two INET socket transmissions between

the two FTMs. So, the time reported for each to is actually the time for a

total of six message hops, four UNIX and two INET. Again, the entire

message is sent over each hop; including the return path, so that the

response message can be compared with the original user message.

A brief comparison of Tables VII and VIII shows that the delay

time in sending a user message through the FTM system is approximately

50% higher if the sender and target applications are running at different

Whether or not these delays are acceptable is application depen-

dent. As an aid to comparison, data derived from "raw" UNIX message
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communication is also presented. In a fashion similar to the way that pro-

grams zto and zdummy act together to accumulate and report timing

statistics through the FTM, program zztoun acts with program

zzdummy_un to accumulate and report timing statistics directly over

UNIX sockets when sender and target both reside on a single node. Simi-

larly, program zztoin acts with program zzdummyin to accumulate and

report timing stauistics over direct INET sockets when sender and target

reside on separate nodes.

Table VIII. Timing Data: to (Separate Nodes)

TIME TO SEND DATA (SEPARATE NODES)

LOOPS SIZE MAX MIN AVG STDEV

5000 0 103 26 28 3
5000 0 116 25 29 3
5000 0 101 25 28 3
5000 100 110 33 35 3
5000 100 123 33 35 4
5000 100 99 32 35 3
5000 512 113 35 37 3
5000 512 127 34 37 4
5000 512 105 32 35 3
5000 1024 114 37 41 3
5000 1024 130 38 41 4
5000 1024 111 38 41 4
5000 2048 128 50 52 4
5000 2048 142 50 52 4
5000 2048 121 48 52 4

As can be seen from a cursory comparison of Tables VII and IX, the

delay involved in sending a message through the FTM is on the order of

10 to 20 times longer than the delay involved in using a direct UNIX

socket. The FTM system overhead could be cut by eliminating the full

user data from being transmitted along the return path. This would delete

a level of fault detection from the FTM system. The speedup would be
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minimal and the direct socket would remain an order of magnitude faster.

Table IX. Timing Data: UNIX socket (Single Node)

TIME TO SEND DATA DIRECTLY (SINGLE NODE)

LOOPS SIZE MAX MIN AVG STDEV

5000 100 4 1 1 0
5000 100 5 1 1 0
5000 100 3 1 1 0
5000 512 4 1 1 0
5000 512 4 1 1 0
5000 512 4 1 1 0
5000 1024 4 1 1 0
5000 1024 97 1 1 1
5000 1024 4 1 1 0
5000 2048 4 1 2 1
5000 2048 4 1 2 1
5000 2048 4 1 2 1

Table IX also displays an exceptional condition which should be

mentioned. It can be seen that for one of the test runs, the maximum

response time (MAX in the table) is 97 milli-seconds, while the MAX

values for the other 11 runs range from three to five milli-seconds. And,

Table IX represents a test run in which the FTM system is not present

(direct UNIX socket communication is being timed). With or without the

presence of the FTM system, the response time depends on the current

UNIX activity level. Despite attempts to perform these tests during

periods of minimal system activity, these timing spikes can occur depend-

ing on the load of the system. The number of iterations per test (LOOPS

in the table) is set high enough to minimize the effect of such anomalies.

This particular anomaly can be seen to have had no effect on the average

delay time for the set of 5000 iterations.
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The timing data for a direct connection over an INET socket

between applications on separate nodes is given in Table X.

Table X. Timing Data: INET socket (Separate Nodes)

TIME TO SEND DATA DIRECTLY (SEPARATE NODES)

LOOPS SIZE MAX MIN AVG STDEV

5000 100 96 2 3 1
5000 100 109 2 3 2
5000 100 106 2 3 2
5000 512 99 3 4 1
5000 512 110 3 4 2
5000 512 105 3 4 2
5000 1024 103 4 5 2
5000 1024 111 4 5 2
5000 1024 85 4 5 1
5000 2048 102 5 6 2
5000 2048 110 5 6 2
5000 2048 106 5 6 2

A quick comparison of the average delay times as shown in Tables

VIII and X show that for communicating applications on separate nodes,

the FTM time delay penalty is slightly less than an order of magnitude.

Again, the additional delay versus convenience and fault tolerance trade-

offs must be made on an application by application basis.

5.4.6 Critical File Backup (copycf)

Currently, the FTM system keeps track of backup systems. A stan-

dard UNIX network utility (rcp - remote file copy) is invoked by the FTM

system to perform the actual data copy. The timing for a remote copy to

the backup system is therefore dependent only on the file size and the

current UNIX and network activity level.
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In section 5.5, timing statistics for remote restarts will be

presented. These will include the copycf calls necessary to provide critical

file information at the backup nodes.

5.4.7 Read a User Message (from)

The from call is the only IC user interface routine which does not

result in a communication protocol exchange with the local FTM. Recall

that when a message is sent (with the to call) the message is delivered to

the IC of the target application. The IC gains control as a result of an

interrupt from the target FTM, at which time the target IC queues the

message, constructs an acknowledgment, and then returns control to the

interrupted application.

This means that for a from call, the IC requires only a scan of its

queued messages. If a message matching the request is found, it is

returned to the calling application. Otherwise, the application is immedi-

ately informed that no appropriate message has yet been queued. In

either case, no communication is involved, and thus the time would be

insignificant compared to all other user interface calls.

5.5 Automatic Relocation of Failing Applications

This is the only FTM service that is not performed as the direct

result of a call to a user interface routine. Rather, the FTM system moni-

tors connected applications. Any unrecoverable problem with the commun-

ication link between an FTM and one of its connected applications invokes

the restart/relocation service (An application is connected to the FTM sys-

tem if it has made a successful call to adv and has not made a subsequent

call to ftmclose).
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An FTM which has detected the failure of a connected application

informs all remote FTMs. As a result, all FTMs delete the advertised

name from their internal data tables (structure namtable). The backup

FTM, after deleting the old advertised name, then attempts to perform a

restart. The ftmbkup.lis file is examined and, if the advertised name is

found, the corresponding path is used in the attempt of the restart. Any

application which desires to be eligible for restart is responsible for mak-

ing periodic calls to user interface routine copycf if critical data is required

to be present at the backup node.

5.5.1 Relocation Statistics

Program zflop is used to generate timing statistics on program

relocation/restarts. Because there is no central clock, zflop cycles continu-

ously through the nodes of the distributed FTM system but calculates the

statistics only as it is cycling through the node on which it originally

started. It then assumes that each node transition in the current cycle

took equal time. This does not affect the average time reported for the

multiple cycle run, but the standard deviation will admittedly be some-

what understated.

Since the FTM system itself dynamically chooses backup nodes

based on the current distribution of connected applications, program zflop

cannot choose its own backup node as the next node in a predetermined

cycle. Only if there is an equal number of connected applications at each

node in the FTM system at each zflop startup will zflop cycle correctly.

Or, if there are only two nodes in the current FTM system then zflop will

be forced to cycle between the two nodes (i.e.: flop back and forth) regard-

less of connected application distribution. This has the additional advan-

tage that the understatement of standard deviation is minimized.
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The operation of program zflop is straightforward. After startup,

zflop attempts to access its critical file. If the file is unavailable, zflop

assumes that this is the initial start so it processes the command line

parameters to obtain the LOOPS (number of restarts required before final

termination) and the number of2.odes to expect in one cycle. This informa-

tion, the current loop count (0 for the initial start), running totals for

eventual statistics calculations (again, 0 for the initial start), and other

such information is written to a critical file (about 65 bytes). Next, copycf

is called to have the FTM system copy this file to the backup system. Pro-

gram zflop next exits without calling ftniclose, so that the FTM system

will consider the termination as abnormal, and will restart zflop on the

backup system

When zflop is restarted on a node other than its initial node, it real-

izes that is is within a cycle (by reading the information in its critical file)

so it simply updates its current loop count, rewrites the critical file, calls

copycf to copy the critical file to its current backup system, and exits

without calling ftmclose.

When zflop is restarted on its initial node, which it discovers by

reading its critical file and calculating that its current loop count is a mul-

tiple of the number of nodes in a cycle, it performs timing analysis for the

current cycle and updates the running totals before rewriting its critical

file. Again, copycf is called, followed by an exit without calling ftmclose.

Eventually, zflop will complete the number of loops passed as an

original parameter and carried along from critical file to critical file. At

this point, timing statistics are generated (from the running totals in the

critical file) and output to the critical file. There is now no need to call

copycf since zflop no longer desires to be restarted. So, zflop calls ftmclose



164

to disconnect from the FTM system. Finally, zflop exits, and is not res-

tarted by the FTM system because this termination is not considered

abnormal.

Table XI. Timing Data: Program Restart/Relocation

TIME TO copycf AND RESTART/RELOCATE

LOOPS MAX MIN AVG STDEV

1000 3.999 1.494 1.932 0.302
1000 4.213 1.357 1.819 0.293
1000 2.700 1.477 J 1.621 0.142

The times reported in Table XI are in seconds (all previous tables in

this chapter report time in milli-seconds). Each reported time includes a

backup file copy (copycf) of about 65 bytes, the detection of the zflop pro-

gram exit by its local FTM, tlie dissemination of this information by the

local FTM to the remote FTMs, and finally the program loading and res-

tart by the backup FTM at the backup node.

5.6 Timing Statistics Summary

Figures 17 and 1.8 present a summary of the timing statistics for

the various FTM system calls. The detailed statistics can be found in

Tables III - X.

Figure 17 summarizes the observed time samples for the adv (both

multiple system and single system cases), the ftmclose, the ftmstatus, and

the ftmwhere FTM user interface calls. Recall that the adv and ftmclose

routines will each be called only once in a typical application. The

ftmstatus and ftmwhere routines will probably not be called at all in most

applications.
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Figure 17. Summary of FTM Call Times

The to user interface call, which delivers u..,-r messages to other

local and remote appitcations, is likely to comprise the vast majority of

FTM user interface calls exe,, ted by a typical application. The values in

Figure 17 are averages taken from Tables III - VI.

Figure 18 is a graph which displays the user message transmission

times for varying message sizes. Four cases are graphed: to where the

sender and target applications are on the same node, to where the sender

and target applications are on remote nodes, direct (non-FTM) message
trans misSinn nvar TTlTlY cnr'-e c betwreen sender and target on the same

node, and direct (non-FTM) message transmission over INET sockets

where the sender and target applications are on rem, 'e nodes. The data
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points for the graph of Figure 18 are taken from Tables VII - X.
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Figure 18. Summary of Message Transmission Times

5.7 Reliability Matters

Any attempt to quantify the enhanced reliability offered by the fault

tolerance services of the FTM must be based on the topology of the partic-

ular network being examined. Consider the simplest possible network: an

n node network of similar processors, with I replicated links. Each link is

a single path connecting all the nodes.

For the simple network of Figure 19, it is easy to calculate the sys-

tem reliability given the individual reliabilities of the nodes and links. For

this discussion, reliability will be interpreted as the probability of correct

operation for some given unit of time.

Let: R, be the reliability of each node

R, be the reliability of each link

n be the number of nodes
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1 be the number of links

k be the number of programs in an application group

Assuming each program must execute on a separate processor, we can cal-

culate the reliability of the system both in the case without an FTM

(where the particular k nodes and at least 1 link must remain up) and in

the case with an FTM (where any k nodes and at least 1 link must remain

up):

Without FTM:
Rnk" -I-(1-R,~l

With FTM:

Rnkl

link2

link 1

noelnode 2 node n

Figure 19. Simple Network Topology

Ignoring the reliability of the links (since it is the same in either

case), Figure 20 graphs the reliability (both with and without the FTM
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system) for a 16 node system where the application group requires 5 pro-

cessors. A simplifying assumption made for Figure 20 is that the FTM

system is fully reliable, or at least it will continue to operate, on 5 or more

nodes.

1
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Figure 20. System Reliability on 5 of 16 Nodes

A more realistic network topology to take advantage of the FTM

fault tolerance services would be one such as planar-2 (see Figure 10). In

this case the analysis of fault tolerance levels becomes more complex. For

the planar-2 topology, Turner [88] analyzed failure rates for systems with

relocatable applications.

Included in his analysis is the code and sample output from a

Monte Carlo simulation package provided by this author for validation of
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Turner's results in certain cases. The simulation package analyzes an

N x M planar-2 network with individually definable reliabilities for each

node and link. The reliability of the network is investigated in terms of

the maintenance of a connected component containing at least as many

nodes as required by some given application system.

The FTM system facilitates the implementation of software design

diversity into connected applications. As previously discussed, software

design diversity involves the independent creation and validation of

several software modules, each designed to perform identical processing.

In this case "identical processing" means that any given input would

result in identical output from either of the several software modules. If

the FTM system detects a failure in a connected application, it refers to

the ftmbkup.lis file in order to obtain the path to the file containing the

executable. This file need not contain the original executable; it may con-

tain another software module meant to replace the original.
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CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

6.1 Introduction

The primary objective of this research was to design and develop an

approach to fault tolerance in a loosely coupled environment. Among the

restraints was the requirement that applications which utilize the fault

tolerance services must run along with applications which do not. And,

the applications which do not utilize these services should be in no way

affected. The services need not be transparent to the requesting applica-

tions, but should be convenient.

A literature survey was conducted into recent approaches to fault

tolerance, with emphasis on network environments. A variety of imple-

mentations were studied, including distributed operating systems and dis-

tributed programming languages. From this background, an approach was

chosen: to attempt to layer a fault tolerant environment on top of a stan-

dard operating system. Protocols were developed to implement this fault

tolerant environment. The UNIX operating system was chosen for an

implementation platform since it is the operating system whose current

availability covers the widest selection of hardware platforms.

6.2 Conclusions

The successful implementation of an FTM system employing the

protocols developed demonstrates the feasibility of the approach chosen.

Several projects at Texas A&M University are under development which

use the FTM environment as the sole platform to handle message

transmission between applications. For some projects, including
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applications designed to support remote autonomous distributed systems,

the failure detection and process relocation FTM services are the required

feature. For others, the convenient node-independent FTM message

delivery system is used even though FTM fault tolerance services are not

required.

The usefulness of the FTM approach to layered fault tolerance is

further evidenced by continuing research into the area. A next generation

Fault Tolerant Monitor Protocol (FTMP) is being developed here at Texas

A&M. The FTMP will support all of the services of the current FTM sys-

tem, along with enhancements. Requests and suggestions from application

developers using the current FTM system will be the impetus behind

many of these extensions.

6.3 Recommendations

The implemented FTM system has been used by several groups of

programmers at Texas A&M University for over a year. Based on this

usage, a number of shortcomings have been noticed. Many of these recom-

mendations are being incorporated into the next version, currently under

development.

The FTM system currently does not recognize the presence of a

cooperating sub-group of applications among the group of currently con-

nected applications. Each application is treated as independent, so any

application may communicate with any other. Since several suggested

enhancements to the FTM system will involve control over certain applica-

tions by certain other applications, it is desirable that the FTM system be

able to divide the applications into separate groups.
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This concept could be defined by an abstraction called a project. An

application could issue a defineproject call, which would identify the

applications in the group. Each of these applications would subsequently

issue a join..project call.

This concept of projects would address several other deficiencies

which have been noted in the current implementation of the FTM system.

While failing applications can currently be restarted and relocated upon

failure, they cannot be initially started up. Since join-project would iden-

tify the applications in the group, the FTM system could easily perform

these initial executions of applications.

The define..project (and join.fproject) calls could also provide the

FTM system with other application-specific information. This might

include resources required by the application which are not available at

every node. This information would be essential if the FTM is to choose a

useful backup system for the application. Similarly, if all nodes were not

binary compatible then information as to the paths of several different

executables for an application could be provided to the FTM system so

that it could restart the application correctly.

The current implementation of the FTM system does no routing;

this is left to lower layers of the internet protocols (TCP/IP on the imple-

mentation network). While this is sufficient for simple networks, the stan-

dard UNIX router will fail in the presence of cycles. Examine Figure 10 of

Chapter II (Planar-2 Network Topology). The advantages of this topology

in the face of multiple node and link failures, over that of a duplicated

link connecting all nodes, is obvious.
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While certain routers are available which will handle cycles, the

FTM system can increase performance by maintaining its own routing

tables based on its knowledge of current network topology. This would

include the current "up or down" status of each node and link.

Each FTM is responsible for checking its connected applications.

An application which is found to have terminated (or at least has been

found to be unreachable) is disccnnected from the FTM system by its local

FTM, and that information is propagated throughout the FTM system.

This may result in a restart on a remote system. Because it is difficult for

an FTM to detect "aberrant" program behavior from an application, this

task will most likely be left to other applications within the project. The

FTM system could, however, provide support for the abort of an applica-

tion which has been identified by other applications within its project as

exhibiting aberrant behavior.

Another area for future enhancement would be the development of

health managers. While applications within a project are expected to check

each other for abnormal behavior, applications should not be required (or

able) to check and control the FTM system itself. Currently, if any FTM

detects that it cannot communicate with a remote FTM, it immediately

declares that remote FTM to be down and it so informs all other FTMs. A

more sophisticated health management among the FTMs is required.

Two approaches are suggested: First, each FTM could contain rou-

tines to check on remote FTMs. A consensus mechanism could then be

employed to isolate failed (or aberrant) FTMs from the active distributed

FTiM system. Second, a number of separate processes could be employed.

These processes could have as their bole purpose the "management" of the

FTM system.
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A mechanism to allow cooperating applications to coordinate actions

would be useful. Currently, this can be accomplished only through an

interchange of messages. A distributed object service could allow for more

elegant and efficient distributed cooperation. A distributed object is a data

item owned by a single application. The owning application could create

the named object and could update it as required. All other applications

would be authorized only to read the object.

This distributed object service could be added to the FTM system as

a generalization of the current advertise service, where an application

requests the FTM system to make a unique name known throughout the

distributed system. The same 2-phase commit protocol could be used to

assure that a distributed object name is unique throughout the entire

FTM system.

Applications currently must poll for incoming messages. An applica-

tion makes a call to the from interface routine in order to check for the

presence of messages from other applications. If no messages are present,

the from returns immediately with an appropriate status code. The option

of a blocking from, or an interrupt of the application upon message

receipt, could allow the application to employ the most appropriate of the

three mechanisms. In general, operating systems (including UNIX) allow

all three of these approaches for input processing.

Each application is now allowed to advertise a single name. All

communicating applications send messages to this name. For convenience

in prioritizing incoming messages, the application should be able to define

multiple message gathering facilities (named ports). This would be espe-

cially useful if a blocking from and message receipt interrupt service, as

described above, were implemented. Separate named ports within an
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application could handle incoming messages as appropriate for distinct

message priority levels.

Critical files are copied in their entirety to an application's backup

system upon request to the FTM system. While this is appropriate for

small files containing basic application restart information, it is not

appropriate for larger local files, such as log files, which provide a type of

audit trail of application actions. For these files, it would be preferable to

initially copy the file (if it exists) to the backup system at application

startup, and then update the remote backup copy of the file as the appli-

cation updates the local primary copy.

The FTM system employs a semi-dynamic application backup sys-

tem. As an application starts, the FTM system dynamically chooses a

backup system based on the current distribution of workload amongst the

nodes in the FTM system. However, once chosen this backup becomes

static until the application terminates. Changing workload distribution

should cause updated backup system definitions. In addition, when a node

fails then any application which has that node as a backup should dynam-

ically be assigned a new backup system. Very critical applications should

also be able to request multiple backup systems.

Applications are being written to run under the FTM system which

are sensor and control oriented. It is common for sophisticated sensors

and controls to be able to connect directly to a communication link, such

as Ethernet, and to contain support in read-only memory (ROM) for com-

munications protocols, such as TCP/IP. If application programs running

on a distributed network are comnmunicating through tIhe FTIvi system,

then some of the FTM services (such as node-independent message

delivery) could be of use to the sensors and controls also. However, each



176

sensor or control would not contain a full operating system and therefore

could not run a full FTM.

A subset of the FTM system protocols could be implemented as a

trivial FTM. This trivial FTM running on a sensor or control would allow

it to communicate through the FTM system to an FTM on a full connected

node. This FTM would then handle the required FTM services for the

trivial FTM.

These suggestions all extend the collection of services provided by

the FTM system. This large variety of additional services could be offered

without altering the fundamental concept of the FTM system as a fault

tolerance layer between the application and the standard operating sys-

tem.
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APENDIX A

FTM SYSTEM PROTOCOLS

Appendix A details the protocols underlying the FTM system. These

are catagorized as protocols for IC-to-FTM and FTM-to-FTM and FTM-to-

IC Communications.
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All protocols within the FTM system, whether IC-to-FTM, FTM-to-FTM, or FTM-to-IC, are
messages which are formatted according to the following structure defined in the C

language:

struct msgbuf
char cmd(7]; /* message type */
char from; /* message from FTM or IC ? */
char status[6]; /* action taken on msg so far */

char name-to(21]; P* target of message */
char namefrom121); /* originator of message
char seqnum[12]; /* message sequence nunber */
char errno12]; /* error cede for exceptions */

char mlen(12]; /* length of the next field */
char msg(2049); /* data portion of the msg */

Before attempting to read the detailed descriptions of the individual protocol types,

the following items of information should be read and understood:

1. The cmd field defines the protocol name. Unfortunately, the same protocol name in an

IC-to-FTM message, an FTM-to-FTM message, and an FTM-to-IC message, allows for differ-

ing interpretations of the other fields. That is, the class of message (IC-to-FTM,

FTM-TO-FTM, or FTM-to-IC) and protocol name together define the protocol type.

2. The from field is needed because an FTM component which has stored an arriving mes-

sage will need to know the protocol type when the message gets processed, and as

described in #1 above, the cmd field alone does not uniquely identify a protocol type.

3. The status field is used to indicate the further action needed in response to the

receipt of an instance of this protocol type. A -1 indicates that the message has not

yet been processed and a 0 indicates that the message has been fully processed. origi-

nally, the protocols included some (status == 0) "no action" types (these simply

checked for open logical connections) but the current protocol set includes only
"action required" messages (status == -1). The FTM system components for some protocol

types reset this field in the message (stored after receipt) to a positive integer
value to keep track of partial completion of the actions required. While this is imple-

mentation (rather than protocol) related, these are described here to allow this sec-

tion to be used in debugging the FTM system should a dump of the message queues be

required.

4. Sometimes other fields are also modified during message storage by the receiving FTM

system component. Again, this is implementation rather than protocol related, but is

mentioned in the following descriptions (under the heading STORAGE:) for convenience.

5. The following individual protocol types are described in "close to" alphabetical

order, within protocol class (first IC-to-FTM, then FTM-to-FTM, and finally FTM-to-IC).

This forces a fair amount of duplication, but appears to be less confusing than the

alternative orderings.

PROTOCOL CLASS:

IC-to-FTM
cmd:

ADV
from:

I

status:
-1 until acted upon.
+k while k future responses from other FTMs remain outstanding.

0 when all responses (ADVOK and/or ADVNO) have been received.

name to:
not used
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name from:
the advertised name by which the advertising application wishes to be identified.

seqnum:
the next sequential message sequence number (ordinarily will be 1).

errno:
not used

mlen:
the length of the next field.

msg:
the process ID of the application, which may be used by the FTM to communicate
with the application through other than the normal FTM-to-IC message channel. For
example, the FTM may send interrupts (or signals).

DISCUSSION:
An application has requested connection to the FTM system by attempting to adver-
tise a name. As a result, the Intercept Code has connected as a client to the
local FTM, and the first message sent by the IC to the local FTM defines the name
by which the application wishes to be known throughout the FTM system. The FTM
system must now assure that the requested name will be unique, so the local FTM
will contact all other FTMs (with an ADV message of the FTM-to-FTM class), and
will maintain status > 0 until all other FTMs have responded.

STORAGE:
The msg field is extended with two values: one for the logical connection identif-
ier between the local ftm and the application, and the other with information
about the backup system selected for the application.

PROTOCOL CLASS:

IC-to-FTM
cmd:

CLOSE
from:

I
status:

-1
name to:

not used
name-from:

the name by which the application is currently identified.
seqnum:

the next sequential message sequence number.
errno:

not used
mlen:

0
msg:

not used
DISCUSSION:

An application wishes to disassociate itself from the FTM system. The local FTM
will propagate the information to all other FTMs through FTM-TO-FTM KILLN mes-
sages.

STORAGE:
no changes

PROTOCOL CLASS:
IC-to-FTM

cmd:

STATUS
from:

I
status:

-1
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name to:
not used

name-from:

the advertised name of the requesting application.
seqnum:

the next sequential message sequence number.
errno:

not used
mlen:

0
msg:

not used
DISCUSSION:

The application is requesting status about the current FTM system. The exact
status available will be implementation dependent, but should include such items
as the physical systems in the current FTM configuration, links, workloads, other
available resources, etc.

STORAGE:
no changes

PROTOCOL CLASS:

IC-to-FTM
cmd:

TO
from:

I
status:

-1 until acted upon.
+1 when the message has been forwarded to the next hop.
0 when response from the receiver has been received.

name to:
the advertised name of the desired user message recipient (target).

name-from:
the advertised name of the user message sender (originator).

seqnum:
the next sequential message sequence number.

errno:
not used

mlen:
the length of the next field.

msg:
the user message. This need not Ie ascii, since it will be transmitted as a byte
stream of known length.

DISCUSSION:
An application has requested (through a call to its Intercept Code interface) that
a user message be delivered to another application. The IC embeds the message into
this protocol type and sends it to the local FTM. The local FTM will forward the
user message to the next hop in the path, either to a remote FTM or directly to
the target application if it exists on the local system. A "hop" is the transmis-
sion of a message from a node to the next node in the path toward the target node.

STORAGE:
The name-to and name-from fields are swapped, to match the order in the eventual
response message. The stored user message is unaltered so it can be checked
against the future response from the target Intercept Code.
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PROTOCOL CLASS:

IC-to-FTM
cmd:

TOOK
from:

I
status:

-1
name to:

the advertised name of the user message sender (originator).
name from:

the advertised name of the user message recipient (target).

seqnum:
a copy of seqnum in the IC-to-FTM TO message that this message is in response to.

errno:
not used

mlen:
the length of the next field

msg:
the user message. This is echoed back so it can be compared to the original mes-

sage at each return hop.
DISCUSSION:

The message whose delivery has been requested by application A has been reliably
delivered to the Intercept Code of target application B on a remote system. The IC
in the target application sends this IC-to-FTM TOOK message back along the reverse
path to so inform the FTM on the target system.

STORAGE:
not used

PROTOCOL CLASS:

IC-to-FTM
cmd:

TONO
from:

F
status:

-1
name to:

the advertised name of the user message sender (originator).
name from:

the advertised name of the desired user message recipient (target).
seqnum:

a copy of seqnum in the IC-to-FTM TO message that this message is in response to.
errno:

a code to indicate the reason why the message could not be delivered.

mlen:
the length of the next field.

msg:

the user message.
DISCUSSION:

This is the negative equivalent of the IC-to-FTM TOOK protocol type described
above. For some reason (identified in the errno field) the message which applica-

tion A requested be delivered to application B could not be reliably delivered.
STORAGE:

no changes
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PROTOCOL CLASS:

IC-to-FTM

cmd:
WHERE

from:

I

status:
-1

name to:
not used

name from:

the advertised name of the requesting aplication.

seqnum:

the next sequential message sequence number.

errno:

not used

mlen:

the length of the next field.

msg:

the advertised name of the application whose location is being requested.

DISCUSSION:

An application is requesting the current physical location of another application.

The FTM will respond with information from its database.

STORAGE:

no changes

PROTOCOL CLASS:

FTM-to-FTM
cmd:

ADV

from:

F

status:
-1 until acted upon.

+1 while awaiting confirmation that name from is system-wide unique.

0 when confirmation (positive or negative) has arrived.

name-to:
not used

name from:

the advertised name by which the advertising application wishes to be known.

seqnum:

the next sequential message sequence number.

errno:
not used

mlen:
the length of the next field.

msg:

three fields: the process ID of the advertising application, an identifier for the

logical connection between the local FTM and the application, and information

about the backup system selected for the application.
DISCUSSION:

Once a local FTM has received an IC-to-FTM ADV message from an application, it
sends one of these FTM-to-FTM ADV messages to each other FTM in the current FTM
system. Each of these other FTMs will eventually respond with an FTM-to-FTM ADVOK
or ADV1O -neszage, dcpcnding on whether the nac is unique to it.

STORAGE:

The msg field is extended with one value: an identifier for the logical connection

between the receiving FTM and the sending FTV.
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PROTOCOL CLASS:
FTM-to-FTM

cmd:
ADVOK

from:
F

status:
-1

name to:
the name whose advertisement this message is in response to.

name from:
not used

seqnum:
the next sequential message sequence number.

errno:
not used

mien:
the length of the next field.

msg:
three fields: the process ID of the advertising application, an identifier for the

logical connection between the local FTM and the application, and information

about the backup system selected for the application.
DISCUSSION:

This message implements phase 1 of the 2-phase commit protocol required to declare

a name as unique within the FTM system. An FTM has received a request to advertise

a name and has broadcast the FTM-to-FTM ADV message to all other FTMs. Each broad-
cast recipient who agrees that the name is unique replies with an FTM-to-FTM ADVOK

message. The second phase of the 2-phase commit will occur only if all broadcast
recipients eventually agree.

STORAGE:

no changes

PROTOCOL CLASS:

FTM-to-FTM
cmd:

ADVNO
from:

F

status:
-i

name to:

the name whose advertisement this message is in response to.

name from:
not used

seqnum:
the next sequential message sequence number.

errno:

indicates that the name is not unique, or identifies a miscellaneous error.
mlen:

the length of the next field.

msg:

three fields: the process ID of the advertising application, an identifier for the
logical connection between the local F7M and the application, and information

about the backup system selected for the application.

DISCUSSION:
This message is the negative equivalent of the FTM-to-FTM ADVOK message described

above. An FTM has received a request to advertise a name and has broadcast the

FTM-to-FTM ADV message to all other FTMs. This broadcast recipient replies with an

FTM-to-FTM ADVNO message to reject the request.
STORAGE:

no changes
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PROTOCOL CLASS:

FTM-to-FTM
cmd:

ADVOKY
from:

F
status:

-1

name to:
the name whose advertisement this message is in response to.

name from:
not used

seqnum:
the next sequential message sequence number.

errno:
not used

mlen:
0

msg:
not used

DISCUSSION:
This message implements phase 2 of the 2-phase commit protocol required to declare

a name as unique within the FTM system. An FTM has received a request tn advertise

a name and has broadcast the FTM-to-FTM ADV message to all other FTMs. Each broad-
cast recipient has agreed that the name is unique and has thereby replied with an

FTM-to-FTM ADVOK message. Since the original FTM has received all ADVOK replies to

its FTM-to-FTM ADV broadcast, the name is indeed unique throughout the FTM system,

so this FTM-to-FTM ADVOKY message is broadcast so that all FTMs will treat the

name as a unique identifier.
STORAGE:

not used

PROTOCOL CLASS:

FTM-to-FTM
cmd:

ADVOKN
from:

F
status:

-l

name to:
the name whose failed advertisement this message is in response to.

name from:
not used

seqnum:
the next sequential message sequence number.

errno:
indicates that the name is not unique, or identifies a miscellaneous error.

mlen:
0

msg:
not used

DISCUSSION:
This is the negative equivalent of the FTM-to-FTM ADVOKY protocol type described
above. Phase 2 of the ?-phase commit protocol has failed: the original FTM has

broadcast an advertised name to all other FTMs, but at least one of these FTMs has

replied with an FTM-to-FTM ADVNO and errno code to indicate duplicate name. This
can happen, for example, if some other application somewhere in the distributed

FTM system is simultaneously attempting to advertise an identical name. So, the

original FTM uses this protocol type (FTM-to-FTM ADVOKN) to inform all other FTMs

that it is retracting its partially completed attempt to advertise the name.
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STORAGE:
not used

PROTOCOL CLASS:

FTM-to-FTM

cmd:
KILLN

from:
I if the disconnect was detected locally
F if the disconnect was detected by a remote FTM

status:
-i

name to:
not used

name from:
the previously advertised name which should now be deleted.

seqnum:
the next sequential message sequence number.

errno:
0 if this is the result of an ftmclose call.

-1 if this is the result of a disconnected application socket.
-2 if this is the result of a remote FTM failure.

mlen:
0

msg:
not used

DISCUSSION:
The sending FTH is requesting that a name which has been successfully advertised
as unique in the past should now be completely deleted from all FTMs in the FTM
system. This could be because the application has requested disconnection from the
FTM system, the application has failed and the name must be deleted prior to re-
advertisement at its backup node, or a complete node (or at least its FTM) has
failed and the FTM which detected the failure is requesting deletion of all names
advertised by the failing FTM.

STORAGE:

not used

PROTOCOL CLASS:

FTM-to-FTM
cmd:

TO
from:

F
status:

-1 until acted upon.
+1 when the message has been forwarded to the target IC.
0 when response from the target has been received.

name to:
the advertised name of the desired user message recipient (target).

name from:
the advertised name of the user message sender (originator).

seqnum:
a copy of seqnum in the IC-to-FTM TO message that this message is in response to.

errno:
not used

mlen:
the length of the next field.

msg:
the user message. This need not be ascii, since it will be transmitted as a byte
stream of known length.
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DISCUSSION:
An application A has requested that a message be delivered to an application B.
The FTM local to application A received the request (through an IC-to-FTM TO mes-
sage) and determined that application B is on a different system. So, it sends
this FTM-to-FTM TO message to forward the application's message to the FTM at the
target system.

STORAGE:
The name-to and name from fields are swapped, to match the order in the eventual
response message.

PROTOCOL CLASS:

FTM-to-FTM
cmd:

TOOK

from:
F

status:
-i

name to:
the advertised name of the user message sender (originator).

name from: 1
the advertised name of the user message recipient (target).

seqnum:
a copy of seqnum in the IC-to-FTM TO message that this message is in response to.

errno:
not used

mlen:
the length of the next field

msg:
the user message. This is compared against the FTM-to-FTM TO message which has
been retained (with status == +1) to assure that the message has been delivered to
the target and echoed back correctly.

DISCUSSION:
The message whose delivery has been requested by application A has been reliably
delivered to the Intercept Code of target application B on a remote system. The

FTM on the target system uses this FTM-to-FTM TOOK message to so inform the FTM on
the original sending system.

STORAGE:
not used

PROTOCOL CLASS:

FTM-to-FTM
cmd:

TONO
from:

F
status:

-1
name to:

the advertised name of the user message sender (originator).
name-from:

the advertised name of the desired user message recipient (target).
seqnum:

a copy of seqnum in the IC-to-FTM TO message that this message is in response to.
errno:

a code to indicate the reason why the message could not be delivered.
mlen:

the length of the next field.
msg:

the user message.
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DISCUSSION:
This is the negative equivalent of the FTM-to-FTM TOOK protocol type described
above. For some reason (identified in the errno field) the message which applica-
tion A requested be delivered to application B could not be reliably delivered.

STORAGE:
no changes

PROTOCOL CLASS:

FTM-to-IC
cend:

ADVOK
from:

F
status:

-1
name to:

the name whose advertisement this message is in response to.
name from:

not used
seqnum:

the next sequential message sequence number.
errno:

not used
mlen:

0
msg:

not used
DISCUSSION:

The advertise operation has completed successfully. This message from the local
FTM informs the Intercept Code of the requesting application that the requested
name has been found to be unique and has been successfully advertised throughout
the FTM system. The application may now request any available FTM system services.

STORAGE:
The Intercept Code has blocked while awaiting response to an ADV message. This
return message is handled immediately without ever being stored.

PROTOCOL CLASS:

FTM-to-IC
cmd:

ADVNO
from:

F
status:

-l

name to:
the name whose advertisement this message is in response to.

name from:
not used

seqnum:
the next sequential message sequence number.

errno:
indicates that the name is not unique, or identifies a miscellaneous error.

mien:
0

msg:
not used

DISCUSSION:
This message is the negative equivalent of the FTM-to-IC ADVOK message described
above. The advertise operation has not completed successfully. This message from
the local FTM informs the Intercept Code of the requesting application that the



198

operation has failed and that the application has not been connected to the FTM
system. The reason for this failure (duplicate name or miscellaneous system error)
is indicated by the errno field.

STORAGE:
The Intercept Code has blocked while awaiting response to an ADV message. This
return message is handled immediately without ever being stored.

EBOO Q.L •S.I1A
FTM-to-IC

cmd:
CLOSOK

from:
F

status:
-1

name to:
the advertised name of the application which has just been disconnected.

name-from:
not used.

seqnum:
the next sequential message sequence number.

errno:
not used

mlen:
0

msg:
not used

DISCUSSION:
The application has requested that it be disconnected from the FTM system. Its
Intercept Code has forwarded this request to the local FTM, which has performed
the operation locally (and remotely through FTM-to-FTM KILLN messages). Since the
IC has preprocessed the original request, including consistency checking, this
request will always succeed.

STORAGE:
The Intercept Cod, has blocked while awaiting response to a CLOSE message. This
return message is .aandled immediately without ever being stored.

PROTOCOL CLASS:
FTM-to-IC

cmd:
STATOK

from:
F

status:
-1

name to:
the advertised name of the application which has just been disconnected.

name from:
seqnum:

the next sequential message sequence number.

errno:
not used

mlen:
the length of the next field.

msg:
the status information. The length and contents will be implementation dependent,
but should include such information as current nodes and links in the FTM system,
miscellaneous available system resources, current workloads, etc.

DISCUSSION:
The application has requested that it be giver, current status information by the
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FTM system. Its Intercept Code has forwarded this request to the local FTM, which
has performed the operation locally. Since the IC has preprocessed the original
request, including consistency checking, this request will always succeed.

STORAGE:
The Intercept Code has blocked while awaiting response to a STATUS message. This
return message is handled immediately without ever being stored.

PROTQCOL CLASS:

FTM-to-IC
cmd:

TO
from:

F
status:

-l

name to:
the advertised name of the desired user message recipient (target).

name from:
the advertised name of the user message sender (originator).

seqnum:
a copy of seqnum in the IC-to-FTM TO message that this message is in response to.

errno:
not used

mlen:
the length of the next field.

msg:
the user message. This need not be ascii, since it will be transmitted as a byte
stream of known length.

DISCUSSION:
An application has requested (through a call to its Intercept Code interface) that
a user message be delivered to another application. That message has been for-
warded through the FTM system and is now being delivered to the IC at the target
application.

STORAGE:
The entire message is stored unchanged (on a queue) by the target IC. The target
IC will immediately respond (with an IC-to-FTM TOOK or TONO) since the originator
IC is blocking awaiting confirmation that the user message has been delivered to
the target IC. The application may read the message anytime in the future.

PROTOCOL CLASS:

FTM-to-IC
cmd:

TOOK
from:

F
status:

-1
name to:

the advertised name of the user message sender (originator).

name-from:
the advertised name of the user message recipient (target).

seqnum:
a copy of seqnum in the IC-to-FTM TO message that this message is in response to.

errno:
not used

mlen:
the length of the next field.

msg:
the user message. This is echoed back so it can be compared to the original mes-
sage at each return hop.
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DISCUSSION:

The message whose delivery has been requested by application A has been reliably
delivered to the Intercept Code of target application B on a remote system. The IC

in the target application has echoed back with an IC-to-FTM TOOK message, which
has been forwarded appropriately and is now being sent along the final return path

hop to the originator application.
STORAGE:

The Intercept Code has blocked while awaiting response to a TO message. This
return message is handled immediately without ever being stored.

PROTOCOL CLASS:

FTM-to-IC
cmd:

TONO
from:

F
status:

-1
name-to:

the advertised name of the user message sender (originator).
name-from:

the advertised name of the user message recipient (target).
seqnum:

a copy of seqnum in the IC-to-FTM TO message that this message is in response to.
errno:

a code to indicate the reason why the message could not be delivered.

mlen:
the length of the next field.

msg:
the user message. This is echoed back so it can be compared to the original mes-
sage at each return hop.

DISCUSSION:

This is the negative equivalent of the FTM-to-IC TOOK protocol type described
above. For some reason (identified in the errno field) the message which applica-

tion A requested be delivered to application B could not be reliably delivered.
STORAGE:

The Intercept Code has blocked while awaiting response to a TO message. This
return message is handled immediately without ever being stored.

PROTOCOL CLASS:

FTM-to-IC
cmd:

WHEROK
from:

F
status:

-i

name to:
the advertised name of the application which has just been disconnected.

name-from:
-eqnum:

the next sequential message sequence number.
errno:

not used
mlen:

the length of the next field.
msg:

the current physical system on which the application in question resides.
DISCUSSION:

The application has requested that it be given the current physical system on
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which a certain application, identified by its advertised name, resides. Its
Intercept Code has forwarded this request to the local FTM, which has performed
the operation locally. Since the IC has preprocessed the original request,
including consistency checking, this request will always succeed.

STORAGE:
The Intercept Code has blocked while awaiting response to a WHERE message. This
return message is handled immediately without ever being stored.
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APENDIX B

FTM PROTOTYPE DISTRIBUTION LIBRARY

The FTM system is available for distribution on a diskette. This

diskette contains three files: INSTRUC, FTM.LIS, and FTM.TAR.

INSTRUC is a text file which describes how FTM.TAR was created, so

that it can be restored to a UNIX system. FTM.LIS is a list of the indivi-

dual files bundled into FTM.TAR. The restored FTM.TAR will consist of

the files as listed in FTM.LIS. These files are printed in Appendix B and

Appendix C. The files in Appendix B can be used to create a customized

FTM system, while the files in Appendix C result in validation and perfor-

mance tests - the same tests used to generate the statistics of Chapter V.

Once the distribution library has been restored to a UNIX system,

the steps necessary to create a customized FTM system are as follows:

1. Edit file header.h to update three #define constants: First,

PORT must be set to a UNIX communication port which is

available on all local UNIX systems which may become part

of a running FTM distributed system. For convenience, it

may be desireable to register this port to the FTM system so

that it is unavailable to other users. Second, FTMPATH must

be set to contain the complete path to the directory into

which the FTM distribution library has been restored. Third,

SOCKPATH must be set to contain the complete path to a

directory into which the FTM system can create temporary

files. This directory may be replicated on each individual

node or may be a single directory available to each node

within the FTM system.



203

2. Invoke standard UNIX utility "make" to create the required

FTM system executables and libraries.

3. Edit the file ftns.lis to reflect the local configuration for the

distributed FTM system and file ftmbkup.lis to reflect the

user programs for which automatic restart/relocation is

desired. This information must be available throughout the

distributed FTM system. Thus, if the directory into which the

FTM distribution library has been restored is not file served

throughout the various nodes, then ftms.lis and ftmbkup.lis

must be replicated on each node. The FTM executable (file

ftm, created during step 2) similarly must be available at

each node.

4. That's it - you should now have an operational FTM system

ready to run. Please read the file Readme (the first file

printed in this appendix) which contains complete startup

and user interface details.
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/' Readme */
1* *I

/* Purpose - application programmers instruction guide
/* ,

FTM and INTERCEPT LIBRARY V03.04

CHANGES FROM V03.03:

(1) - the ftms no longer crash together. If one goes down, the others continue
to interact. Any connected applications on the failing ftm with a defined
backup system are restarted on that backup system.

***** THE FOLLOWING CHANGE PRODUCES AN INCOMPATABILITY "***
(2) - the bkup.lis file is no longer used. It has been replaced by the

ftmbkup.lis file.

*** THE FOLLOWING CHANGE PRODUCES AN INCOMPATABILITY *

(3) - the interface call to ftmwhere has been changed to add another parameter.

DIRECTORY: /u/auvusersl/auvschi/ftm/

CONTENTS: Readme - This file.
Makefile - The file used as input to UNIX program "make" to

create the libraries and executables in this
distribution library.

Lint - This file can be used as input to UNIX program "make"

in order to perform consistency checking beyond that
of the C compiler.

header.h - Global definitions and list of other header files
used in the FTM and Intercept Code routines. In

general, one can update the FTM system (to change
parameter values and/or define paths to rehost the

FTM system) by updating the well-commented entries in
this file and then invoking the standard UNIX "make"
program.

ftms.lis - A sample text file containing the list of active
systems for the next FTM system startup.

ftmbkup.lis - A sample text file containing information the ftm can
use to restart programs on their backup systems.

rkill - A utility shell script used locally to send signals
to remote processes. This is used by FTM shutdown

program: ftmkill. rkill would have to be modified
to run on a diff._rent local area network with
different node names.

ztest*.c - 4 sample programs that communicate with each other.

These can be used to verify that a generated FTM
system performs basic operations.

z*.c - Sample programs to generate FTM system performance

statistics.
*.c - The source code for the FTM system.
THE FOLLOWING ARE NOT INCLUDED IN THIS DISTRIBUTION LIBRARY,
BUT ARE GENERATED BY UNIX PROGRAM "make":

intlib.a - The intercept library, to be linked into programs.
ftm - The fault tolerant monitor executable.
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ftmstart - Command to automatically start the ftms.
rundaemon - Called by ftmstart to start remote ftm programs as

UNIX daemons.
ftmkill - Calls shell script rkill (described above) to shut

down remote ftm programs.
ALSO GENERATED BY PROGRAM "make" ARE OTHER LIBRARIES AND OBJECT
FILES USED ONLY BY PROGRAM "make" AND RETAINED ONLY TO SPEED UP
FUTURE FTM SYSTEM GENERATIONS. ALSO , *.BAK FILES ARE GENERATED
BY PROGRAM "indent" WITHIN "make". THESE CAN GENERALLY BE
DELETED AFTER "make" COMPLETES SUCCESSFULLY.

INTRODUCTION:

The purpose of the ftm and intercept code is to allow applications to send
messages tc. each other without the need to know which physical machine is
currently running any particuldr application. Applications may be terminated
(either normally or killed) and restarted on the same or another machine.

PROCEDURE:

In order to use this routing, the following steps must be followed:

(W) - Link intlib.a into your C or LISP program.
(2) - Edit ftms.lis to include the systems on which you will be running your

tasks. It -s not mandatory that a user task must actually be run on each

of these systems.
(3) - Run "ftm" on each of the systems included in the ftms.lis file. It IS

MANDATORY that ftm be run on each of these systems. They should all be
started within 60 seconds (a #define constant set in file: header.h) of
each other. They may be run in the background - the only output from each
ftm is the line (to syserr):

2TM: Kxxxxx FULLY CONNECTED - START APPLICATIONS
which will appear only after an ftm has connected to all the other ftms.
There is no other output except error messages to syserr.

(3a)- You may run "ftmstart" to automatically start the ftms. This command
will read the ftms.lis file to determine which systems on which to start
ftms. A daemon is invoked to start each of these ftms, and the ftm
messages are saved in a file (defined in file: header.h).

(4) - Edi* ftmbkup.lis to reflect any programs you want to be automatically
restarted on their backup systems.

(5) - Start the applications. At any time, an application may be terminated
and restarted on the same or any connected system.

(6) - an application must call adv(name) as its first call to the intercept
routines. See INTERFACE below for details of calls.

(7) - When you are done, kill the ftms. They never stop on their own, unless
an ftm detects an error that it cannot handle.

(7a)- You may run "ftmkill" to kill all the ftms in this ftm system.

GLOBAL NAMES:

The following global names are used for procedures (P) and variables (V) within
the intercept code. They should NOT be used as global names by any routines
with which the intercept routines will be linked.

P - findbuf
V - ftmsock
V - ftmtime
V - ftm ic
P - getmsgs
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V - intadvyet
V - intmyname
V - intpidme
V - int msgs
V - intseqnum
V - msgfirst
P - msgfrmlist
V - msglast
P - msgtolist
P - namlookup
P - recv msg
P - recv pkt
P - send msg
*P - setcap
IP - strlcpy
*P - strnlen

Actually, the procedures above marked *P are utility routines which may be
called directly if desired. The definitions are:

void setcap (buf, len) /* The buffer buf of length len has all */
char *buf; / lower case characters converted to */
int len; /* upper case.

char *strlcpy (sl, s2, len) / This call operates as strncpy()
char *sl, / is described in the blue C book

*s2; /* by Kochan. Tho standard SUN UNIX

int len; /* strncpy() routine is different. */

int strnlen (sl, len) /* This routine returns: */
char *sl; min (strlen (sl), len)
int len; /*

INTERFACE:

int adv (name)
char *name;

At present, name can be any ascii string up to 20 characters. If it is of
length 1, then it cannot be "*". If name is longer than 20 characters, then
only the first 20 are used. Internally, the capitalized version of name is
maintained.

rc == 0: successful return, the name has been advertised to all ftms.

rc == -1: errno == EWOULDBLOCK => name is currently known !n the system; the
system will not wait for the other application
using this name to terminate.

errno == EALREADY => this process has already successfully
advertised a name. Only one name per process
is allowed.

errno = EINVAL => the name parameter is zero length or is "*"
errno == ENOTCONN => the connection to the local ftm has been lost;

this is an uncorrectable error.

errno == EFAULT => misc. uncorrectable error.
................................................................................

int copycf (name, filename)
char *name,

*filename;
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name is as described above, filename is the full path to a local file.

This file is remote copied to the system wich is the current backup system

for the application which has advertised name. Ordinarily, name is the

advertised name for the calling application, so that copycf serves to
provide a remote copy of a local critical file at the backup system.

rc == 0: successful return, the file has been copied.

rc == -1: errno == EWOULDBLOCV => name is currently unknown in the system; the

system will not wait for some application to
advertise this name.

errno == EINVAL => a parameter is zero length or too long

errno == ENOTCONN => the connection to the local ftm has been lost;
this is an uncorrectable error.

errno any other => errno is the error code from the system

call to invoke a rcp routine. Possible
errors include non-existent local file
or unreachable target directory.

................................................................................

int from (name, buf, len)

char *name,
*buf;

int len;

name is as described above. buf points to the message buffer into which the
message will be placed. len is the size of the buffer. If the message is

too long to fit, the remainder will be discarded. The message placed into buf
will be the oldest current message from the application which advertised name.

name is case-insensitive.

Option: if name points to the single characer ascii STRING "*", then the message
placed into buf will be the oldest current message from any application. In

this case name becomes a value-return par&.neter. It receives the advertised

name of the message sender. Note that tl', capitalized version of the advertised
name is returned. This may differ from the actual originally advertised name.

rc >= 0: successful return, rc bytes were actually placed into buf.

rc == -1: errno == EWOULDBLOCK => no messages have been received frcm a sender
who has advertised name. It may or may not
be that such a sender currently exists in any

connected system.

errno == EINVAL => the name parameter is zero length or the len
parameter is negative.

errno == ENOTCONN => there are no messages which fit the requested

criteria in the message buffer. In addition,
the connection to the local ftm has been lost;
this is an uncorrectable error.

errno == EFAULT => misc. uncorrectable error.
................................................................................

int ftmclose ()

This call removes the advertised name from the ftm tables. If the program
terminates without calling ftmclose() then the ftm considers it to be an

abnormal termination, which means that if a backup system has been defined in
the bkup.lis file then the ftm on that backup system will attempt to restart

the program. If this program is not in the bkup.lis file, then it does not

matter whether or not ftmclose() is called before the program terminates.

rc == 0: successful return.

rc == -1: errno == ENOTCONN => the connection to the local ftm has been lost
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during the ftmclose call. This is an
uncorrectable error. Note that the connection
will always be broken as a result of this
ftmclose call.

errno == EFAULT => misc. uncorrectable error.
................................................................................

int ftnstatus (pnum, sunstat, mirror)

int pnum,
*sunstat,
*mirror;

pnum is the number of following parameters. This is for future enhancements

to this call in which additional status items will be returned. All parameters
after pnum are return parameters. This means:

pnum <= 0 => nothing will be returned.
pnum == 1 => sunstat will be returned.
pnum == 2 => sunstat and mirror will be returned.

sunstat has bits set to indicate active systems with a connected ftm.
mirror indicates the status of the disk mirroring.

sunstat: BIT 0 => auvsun0

BIT 1 => auvcl
BIT 2 => auvc2
BIT 3 => auvc3
BIT 4 => auvc4
BIT 5 => auvc5
BIT 6 => auvc6
BIT "1 => auvc7
BIT 8 => auvc8
BIT 9 => auvc9
BIT 10 => auvclO

BIT 11 => auvell
BIT 12 => auvcl2
BIT 13 => auvcl3

BIT 14 => auvcl4
BIT 15 => auvcl5
BIT 16 => auvcl6
BIT 17 - A: usunl

mirror == 0 -> DRIVE 0 DOWN /* MEANINGLESS UNTIL DISK MIRRORING INSTALLED */

== 1 => DRIVE 1 DOWN
== 2 => BOTH DRIVES UP

rc == 0: successful return.

rc -= -1: errno == ENOTCONN => the connection to the local ftm has been lost;
this is an uncorrectable error.

errno == EFAULT = misc. uncorrectable error.

NOTE - the above status information will probably be of little or no use if
the FTM system has been generated on a different distributed system.

In this case the status message handler (hndlstatus.c) should be
modified to provide useful status information with respect to the
current hardware configuration.

int ftmwhere (name, bufl, buf2)
char *name,

*bufl,
*buf2;
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name is as ,ies.ried above. bufl points to a buffer into which will be placed
the name of th, ;yr im on which the process that has advertised name is

currently running. if there is no such process, then bufl receives a null

terminated zero length string (ie: a single hex zero byte). Our current system

names require a buffer of length 8. For example: auvsunl requires 7 bytes for

the characters and 1 byte for the null terminator. It should be noted that SUN

UNIX allows for system names of up to 64 characters (MAXHOSTNAMELEN in header

file: /usr/include/sys/param.h), which would require a buffer of length 65. buf2

is similar, except that it receives the name of the backup system chosen by the

ftm for the process.

rc >= 0: successful return.

rc == -1: errno == EINVAL => the name parameter is zero length or is "*"

errno == ENOTCONN => the connection to the local ftm has been lost;
this is an uncorrectable error.

errno -= EFAULT -> misc. uncorrectable error
................................................................................

int to (name, buf, len)
char *name,

*buf;

int len;

name is as described above. buf points to the message buffer to be sent. If

len is non-negative, it is interpreted as the length of the buffer and EXACTLY

that many bytes are sent (this may include NULLs or ANY other bytes). If len

is negative, then buf is assumed to contain an ascii string, and that string
(including the NULL terminator byte) is sent. A zero length string may be sent

and will be handled correctly. name is case-insensitive. At present, the maximum

message length supported is 2048 bytes - any excess will be truncated. Since
only the specified length is physically transmitted, it is wasteful of system

resources to pad your buffer. An application may send a message to itself.

rc >= 0: successful return, rc bytes were actually transmitted.

rc == -1: errno == EWOULDBLOCK => name is currently unknown in the system. The
system will not wait for some other

application to advertise this name.

errno == EINVAL => the name paramete, is zero length or is "*"
errno == ENOTCONN 0> the connection to the local ftm has been lost;

this is an uncorrectable error.
errno EFAULT => misc. uncorrectable error.

................................................................................

RESTART:

Once a program has successfully called adv(name) it may be automatically

restarted by the ftm. If the name is listed in the ftmbkup.lis file, along
with the path name for the program, then upon abnormal program termination
the program will be restarted on the backup system by the backup system's ftm.

See the comments in the bkup.lis file for format details.

Note the following:

(1) - the program is restarted after abnormal termination. The ftm defines

abnormal termination as follows: The program has successfully called
adv(name) and has terminated without successfully calling ftmclose().

(2) - the ftmbkup.lis file may be edited at any time and the newly saved
version is used for future program terminations.

(3) - the only error in the ftmbkup.lis file that the ftm will detect is if
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the path name to the program is not an executable file.

(4) - no arguments will be passed to the restarted program.

(5) - the control terminal for the restarted program will be inherited from
the ftm on the restart system. If the restarted program needs its own

terminal session to operate then it must handle this itself. The

restarted program also inherits lots of other stuff from the ftm (like

process id, working directory, etc.) See the execve(2) system call
for full details.

RESTRICTIONS:

(1) fork() - Because the ftm needs to know from which process each message is

received and to which process each message is sent, two processes cannot
share the same advertised name. The application program can try to get

around this restriction by a call to fork() following a call to adv(name).

This means that the ftm would now be connected to two different processes
through the same advertised name. Since the ftm would have no way of
knowing to which process a message should be directed, the intercept library

copy in the forked child resets itself. The following should be noted:

(1) - only the process that calls adv(name) should subsequently call any

of the other intercept library interface routines.
(2) - any child process should advertise its own unique name if it needs a

name to communicate by.
(3) - a child process may communicate with its parent provided each has

advertised a unique name,.
(4) - there is nothing wrong with calling fork() after adv(name) as long as

the child does not expect to communicate using that particular name.

(2) signals - The intercept code uses SIGUSRl. Therefore, linked programs

must not issue, block, or handle SIGUSRl signals. Also, the intercept

code ignores EPIPE signals. If linked programs must provide a signal
handler for broken pipes, then this handler should NOT call intercept code

routines if the broken pipe is not on a user-initiated socket connection.

KNOWN BUGS:

(1) The backup system for an application is not dynamic. So, if the backup
system for an application goes down while the application is running then
the application will continue running, but without a backup system.
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# Makefile

# Purpose - create the FTM and the Intercept Library with this file as input/
# ~to Standard UNIX utility "make".

FTMOBJS =conall.o contirnout.o ifget.o ffget.o findbuf.o ftmisdown.o hndladvf.o
hndladvi.o hndladvok.o hndladvoky.o hndlclose.o hndlkiiln.o
hndlstatus.o hndlto.o hndltook.o hndlwhere.o msgdurnp.o msgfrmlist.o
rnsghndl.o msgtolist.o namfrnilist.o namlookup.o narntolist.o nline.o
pick bkup.o recvmsg.o recvpkt.o send msg.o setcap.o strlcpy.o

INTOBJS adv.o copycf.o findbuf.o from.o ftrnclose.o ftmstatus.o ftznwhere.o
getmsgs.o msgfrmlist.o msgto2.ist.o rccv-msg.o recv.p! t.o sendmsg.o
sctcap.o strlcpy.o strnlen.o to.o

INDENTPARMS = -bacc -bc -c13 -d99 -nfcl -13 -180 -ip -npro -npsl -sc -v

all: ftrn ftrnkill ftmstart rundaemon ftrntests tests

cc ftrn.o ftmlib.a -o ftm

ftrnkill: ftmkill.o
cc ftmkill.o -0 ftmkilll

ftrnstart: ftmstart.o nline.o
cc ftrnstart.o nline.o -o ftmstart

ftinteSLS: zadvclose zdummy zflop zstatus ztest2 ztest4 ztestc ztestd Zto zwhere

rundaernon: rundaemon.o
cc rundaerrnon.o -o rundaemon

tests: zzdumyin zzdumnyun zzto in zzto-un

zadvclose: zadvclose.o intlib.a /lib/libm.a
cc zadvclose.o intiib.a -lm -o zadvclose

zdumnxy: zdurnmy.o intlib.a
cc zdummy.o intlib.a -o zdurnmy

zflop: zflop.o intlib.a /lib/libm.a
cc zflop.o intlib.a -lm -o zflop

zstatus: zstatus.o intlib.a /lib/librn.a
cc zstatus.o intlib.a -lmn -o zstatus

ztest2: ztest2.o intlib.a
cc ztest2.o intllb.a -o ztest2

ztest4: ztest4.o intlib.a
cc ztest4.o intlib.a -o ztest4

ztestc: ztestc.o intlib.a
cc ztestc.o intlib.a -o ztestc

ztestd: ztestd.o intlib.a
cc ztestd.o intlib.a -o ztestd
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zto: zto.o intlib.a /lib/libm.a
cc zto.o intlj,.a -Im -o zto

zzdummzy in: zzdurmyin.o
cc zzdummry in.n -o zzdummy in

zzdummyun: zzdummyun .o
cc zzdumyun.o -o zzdummyun

zzto in: zzto in.o /lib/libm.a
cc zzto in.o -im -o ZZto-in

zzto un: zzto un.o /lib/librn.a
cc zzto un.o -In -o zzto-un

zwhere: zwhere.o intlib.a /lib/libm.a
cc zwhere.o intlib.a -Irn -o zwhere

ftmlib.a: $ (FTMOBJS)
ar rcv ftrnlib.a S(FTMOBJS)

ranlib ftrnlib.a

intlib.a: $(INTOBJS)
ar rcv intlib.a S(INTOBJS)
ranlib intlib.a

header.h: /usr/include/errno.h 'usr/include/fcntl.h
fusr/include/malloc.h .usr/includelmath.h

/usr/include/netdb.h /usr/includesignal.h
/usr/include/string.h /usr/include/netinet/in.h
/usr/include/sys/resource.hi /usr/include/sys/socket.h
/usr/include/sys/time.h /usr/include/sys/types.h
/usr/include/sys/un.h /usr/include/sys/wait .h

touch header.h

adv.o: adv.c header.h
-indent S(INDENTPARMS) adv.c
cc -c adv.c

conall.o: conall.c header.h
-indent S(INDENTPARMS) conall.c
cc -_ conall.c

contirnout.o: contimout.c header.h
-indent $(INDENTPARMS) contimout.c
cc -c contimout.c

copycf.o: copycf.c header.h
-indent S(INDENTPARMS) copycf. c
cc -c copycf.c

ffget.o: ffget.c header.h
-indent S{INDENTPARMS) ffget.c

cc -C ffget.c

fifldbuf.u: liridbur.,; gklddeL.1l
-indent $(INDENTPARMS) findbuf.c
cc -c findbuf.c

frorn.o: frorn.c header.h
-indent $(INDENTPARMS) from.c
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cc -c frorn.c

ftm.o: ftm.c headcr.h

-indent $(INDENTPARMS) ftm.c
cc -c fcm.c

ftrnclose.o: ftmclose.c header.h
-indent S(INDENTPARMS) ftmclose.c
cc -c ftmclose.c

ftrnisdown.o: ftrnisdown.c header.h

-indent S(INDENTPARMS) ftrnisdown .c
cc -c ftmisdown.c

ftmkill.o: ftmkill.c headcr.h

-indent S(INDENTPARMS) ftmkill.c
cc -c ftmkili.c

ftrnstart.o: ftmstart.c header.h
-indent $(INDENTPARMS) ftrnstart.c
cc -c ftmstart.c

ftrnstatus.o: ftmstatus.c header.h

-indent S(INDENTPARPS) ftrnstatus.c

cc -c ftmstatus.c

ftmwhere.o: ftrnwhere.c header.h
-indent S(INDENTPARMS) ftrnwhere.c
cc -c ftmwhere.c

getmsgs.o: getmsgs.c header.h
-indent $(INDENTPARMS) getrnsgs.c

cc -c getrnsgs.c

hndladvf.o: hndladvf.c header.h
-indent $(INDENTPARMS) hndladvf.c

cc -c hndladvf.c

hndladvi.o: hndladvi.c header.h
-indent $(INDENTPARMS) hndladvi.c
cc -c hndladvi.c

hndladvok.o: hndladvok.c header.h
-indent $(INDENTPARMS) hndladvok.c
cc -c hndladvok.c

hndladvoky. 0: hndladvoky.c header.h

-indent $(INDENTPARMS) hndladvoky.c
cc -c hndladvoky.c

hndlclose.o: hndlclose.c header.h
-indent S(INDENTPARMS) hndlclose.c
cc -c hndlclose.c

hndlkilln.o: hndlkilln.c header.h
-indent $(INDENTPARMS) hndlkilln.c

hndlstatus.o: hndlstatus.c header.h
-indent $(INDENTPARMS) hndlstatus.c

cc -c hndlstatus.c
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'indlto.o: hndlto.c header.h
-indent S(INDENTPARMs) hndlto.c

cc -c hndlto.c

hndltook.o: hndltook.c header.h
-indent S(INDENTPARMS) hndltook.c

cc -c hndltook.c

hndlwhere.o: hndlwhere.c header.h
-indent S(INDENTPARMS) hndlwhere c

cc -c hndlwhere.c

ifget.o: ifget.c header.h
-undJtSINDENTPARMS) ifget.c

cc -c ifget.c

rnsgdurnp.o: rsgdump.c header.h
-indent $(INDENTPARMS) rsgdump.c

cc -c msgdump~c

rnsgfrrlist.o: rnsafrrilist.c header.h
-indent $(!,\,zMTPARMS) msgfrrnlist.c
cc -c rsgfri~ist.c

rnsghndl.o: rsghndl.c header.h
-indent $(INDENTPARMS) rsghndl.c

cc -c msghndl.c

msgtolist.o: msgtolist.c header.h
-indent S(INDENTPARMS) msgtolist.c

cc -C msgtolist.'-

namfrmlist.o: namfrmlist. ncader.h
-indent $(INDENTPARMS) namfrmlist .c
cc -c namfrmnlist.c

namlookup.o: namlookup.c header.h
-indent S{INDENTPARMS) narnlookup.c

cc -c narnlookup.c

narntolist.o: narntolist.c header.h

-indent S(INDENTPARMS) narntolist.c
cc -c namtolist.c

nline.o: nline.c
-indent $(INDENTPARMSI nline.c
cc -c nline.c

pick bkup.o: pick bkup.c header.h
-indent S(INDENTPARMS) pick bkup.c
cc -c pick bkup.c

recvrnsg.o: recv_msg.c header.h

-indent $(INDENTPARMS) recvmsg.c

cc -c recvrnsg.c

recv pkt~c re"'vpkt.c haader.h

-indent S(INDENTPARMS) recvpkt.c
cc -c recvpkt.c

rundaernon.o: rundaemon-c /usr/include/signal.h /usr/include/stdio.h
/usr/include/sys/param.h /usr/include/sys/file.h
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/usr/includc/syslioctl .h
-indent S( INDENTPARMS) rundaernon. c

cc -c rundaemon.c

send rnsg.o: send rnsg.c header.h
-indent S(INDENTPARMS) send rnsg.c

cc -c send msg.c

setcap.o: setcap.c
-indent S(INDENTPARMS) setcap.c

cc -c setcap.c

strlcpy.o: strlcpy.c
-indent S(INDENTPARMS) strlcpy.c

cc -c strlcpy.c

strnlen.o: strnlen.c
-indent S(INDENTPARMS) strnlen.c

cc -c strnien.c

to.o: to.c header.h
-indent $(INDENTPARMS) to.C
cc -c to.c

zadvclose.o: zadvclose.c header.h
-indent S(INDENTPARMS) zadvclose.c
cc -c zadvc).ose.c

zdurnmy.o: zdummy.c header.h
-indent $(INDENTPARMS) zdummy.c

cc -c zdumxny.c

zfllop.o: zfiop.c header.h
-indent S(INDENTPARMS) zflop.c
cc -C zflop.c

zstatus.o: zstatus.c header.h
-indent S(INDENTPARMS) zstatus.c

cc -c zstatus.c

ztest2.o: ztest2.c /usr/include/stdio.h /usr/include/errno.h

/usr/include/string.h
-indent $(INDENTPARMS) ztest2.c

cc -c ztest2.c

ztest4.o: ztest4.c /usr/include/stdio.h /usr/include/errno.h
/usr/include/string h

-indent $(INDENTPARMS) ztest4.c
cc -c ztest4.c

ztestc.o: ztestc.c /usr/include/stdio.h /usr/include/errno.h
/usr/include/string b

-indent S(INDENTPARMS) ztestc.c

cc -c ztestc.c

ztestd.o: ztestd.c /usr/include/stdio.h /usr/include/errno.h
/usr/include/string h

-indent S(INDENTPARMS) ztestd.c
cc -c ztestd.c

zto.o: zto.c header.h
-indent $(INDENTPARMS) zto.c
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cc -c zto.c

zwhere.o: zwherc.c header.h
-indent $(INDENTPARMS) zwhere.c
cc -c zwhere.c

zzdumnyin.o: zzdummyin.c /usr/include/stdio.h /usr/include/sys/socket .h
/usr/include/sys/types-h /usr/include/netinet/in.h

-indent $(INDENTPARMS) zzdummy in. c

zzdumxnyun.o: zzdurmyun.c /usr/include/stdio.h /usr/include/sys/socket.h
/usr/include/sys/types.h /usr/include/sys/un.h

-indent $(INDENTPARMS) zzdumyun.c

cc -c zzdummyun.c

zzto in.o: zzto-in.c /usr/include/stdio.h /usr/include/sys/socket.h
/usr/include/sys/types.h /usr/include/netinet/in.h
/usr/include/netdb.h /usr/include/math.h
/usr/include/sys/timcb.h

-indent S(INDENTPARMS) zztoin.c
cc -c zzto-in.c

zzto un.o: zzto-un.c /usr/include/stdio.h /usr/include/sys/socket.h
/usr/include/sys/types.h /usr/include/sys/un.h
/usr/include/math.h /usr/include/sys/timeb.h

-indent S(INDENTPARMS) zzto-un.c
cc -c zzto-un.c

# Lint/

# Call: make -f Lint/

# Purpose - run "lint" against the FTM and the Intercept Library. Standard /
#UNIX utility "lint" finds inconsistencies which the C compiler /
#misses. In fact, it finds lots of inconsistencies that you /
#normally do not care about, so be prepared for a large volume /
#of output. But, running "lint" may be invaluable for certain /
#types of errors./

FTMSRCS =conall.c contimout.c ifget.c ffget.c findbuf.c ftmisdown.c hndladvf.c
hndladvi.c hndladvok.c hndladvoky.c hndlclose.c hndlkilln.c
hndlstatus.c hndlto.c hndltook.c hnidlwhere.c msgdump.c msgfrmlist.c
msghndl.c msgtolist.c namfrmlist.c namlookup.c namtolist.c nline.c
pick bkup.c recvmsg.c recvpkt.c send msg.c setcap.c strlcpy.c

INTSRCS =adv.c copycf.c findbuf.c from.c ftmclose.c ftmstatus.c ftmwhere.c
getmsgs.c msgfrmlist.c msgtolist.c recv msg.c recvpkt.c send msg.c
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setcap.c strlcpy.c strnlen.c to.c

all: lint

lint: ftm.c ftmkill.c ftmstart.c rundaemon.c ztest2.c llib-lftmlb.ln
llib-lintlb.ln

lint ftm.c llib-lftmlb.ln
lint ftmkill.c llib-lftmlb.ln

lint ftmstart.c llib-lftmlb.ln
lint rundaemon.c llib-lftmlb.ln
lint ztest2.c llib-lintlb.ln

llib-lftmlb.ln: $(FTMSRCS) header.h
lint -Cftmlb $(FTMSRCS)

llib-lintlb.ln: $(INTSRCS) header.h
lint -Cintlb $(INTSRCS)

/* */

1* ftmbkup.lis
/* */

/* Purpose - equate advertised names with the complete path name to the */
advertising program. This is used for program restarts after */
task and node failures. */

/* */

EACH LINE OF THIS FILE MUST BE FORMATTED AS FOLLOWS:
FIELD 1 : ADVERTISED NAME

FIELD 2 : PROGRAM COMPLETE PATH NAME

FIELD 1 STARTS IN COLUMN 1.
THIS IS FOLLOWED BY AT LEAST 1 TAB.
THIS IS FOLLOWED BY FIELD 2.
THIS IS FOLLOWED BY A NEWLINE OR EOF.

ANY LINES NOT FOLLOWING THIS EXACT FORMAT ARE IGNORED, WHICH IS WHY THESE
COMMENT LINES CAN APPEAR HERE. THAT IS, ANY LINE WITH NO TABS IS CONSIDERED

TO BE A COMMENT LINE.

AN EXAMPLE OF A REAL DATA LINE FOLLOWS. NOTE THAT IT WILL NOT HURT TO LEAVE THE
LINE IN THE FILE, AS LONG AS YOUR PROGRAMS DO NOT USE MY SILLY ADVERTISED NAME.
THERE IS ONE TAB AFTER THE 'Gazorp':

Gazorp /home/auvschi/jun88/testsw

FOLLOWING ARE THE ACTUAL DATA LINES FOR DENIS'S TEST PROGRAMS:

WORLD /home/auvschi/apps/gworld

SKIPPER /home/auvschi/apps/gskip
NAVIGATOR /home/auvschi/apps/gnav
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WEAPON /home/auvschi/apps/gweap

FOLLOWING ARE THE ACTUAL DATA LINE FOR THE RELOCATION TEST PROGRAM "ZFLOP.C"
(RECALL THAT THE FTM SYSTEM IS CASEINSENSITIVE TO ADVERTISED NAMES):

flop /u/auvusersl/auvschi/ftm/zflop

** ftms.lis

Purpose - lists the systems on which ftms must initially be running **

** to create the fault tolerant environment.

Nt Notes - Comment lines must begin with '"' **
- Null lines are ignored it

nodel
node2
node3
node4
node5
node6
node7
node8
node9
nodel0
nodel
nodel2

node13
nodel4
nodel5
node16
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- rkill

- Purpose - this shell script sends signals to remote processes.
Given a signal type (say, for example: TERM) and a program -
name as called (say, for example: /u/auvusersl/auvschi/ftm/ftm -
rkill would be called as:

rkill -TERM /u/auvusersl/auvschi/ftm/ftm

A complete list of signal types can be found in the manual

pages under the function: signal().

- Note - this shell script was written by David Hess. It and routine
- rundaemon.c are the only code in Appendix B not written by the

author of this dissertation.

#!/bin/sh
if (test $# -It 2) then

echo "Usage: rkill signal process-name"
exit

fi
for NODE in auvcl auvc2 auvc3 auvc4 auvc5 auvc6 auvc7 auvc8 auvc9 auvclO \

auvcll auvcl2 auvcl3 auvcl4 auvcl5 auvcl6
do

if (ping SNODE 2 > /dev/null 2>&l) then
temp='rsh SNODE "ps -ax I grep '(0-9] $2'"'
templ='echo Stemp I awk '( print $1 )''

if (test -z "$temp") then

echo "(SNODE]"
echo "not found"

else
echo "[$NODE]"

echo "$temp"
rsh SNODE kill $1 $templ

fi
else

echo Node SNODE appears to be down
fi
echo

done
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- header.h

- Purpose - miscellaneous #includes and global constants.

#include <errno.h>

#include <fcntl.h>
#include <malloc.h>

#include <math.h>
#include <netdb.h>
#include <signal.h>
#include <stdio.h>

#include <string.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <sys/file.h>
#include <sys/param.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <sys/timeb.h>
#include <sys/un.h>
#include <sys/wait.h>

/ ------------------------------------------------------------------------

/* NOTE - FDEBUG AND IDEBUG AND MDEBUG USE stdout - IF THE FTMS ARE STARTED
* BY THE SUPPLIED FTMSTART UTILITY, stdout (and stderr) ARE REDIRECTED
* TO SOCKPATH/stdout xxxxxx (and SOCKPATH/stderr xxxxxx), WHERE
* xxxxxx IS THE HOSTNAME OF THE SYSTEM ON WHICH THE INDIVIDUAL FTM
* IS RUNNING.

#define FDEBUG 0 /* INCLUDE DEBUG CODE IN FTM
#define IDEBUG 0 / INCLUDE DEBUG CODE IN INTERCEPT LIB */
#define MDEBUG 0 /* INCLUDE DEBUG CODE IN FTM AND INTERCEPT

* LIB TO REPORT ON ALL MESSAGE TRANSFERS AT
* SEND AND AT RECV TIMES. */

#define FDEBUGLOOP 2 /* DEBUG TABLE PRINTOUT INITIAL VALUE. USES
* STATIC VARIABLE yesno IN ftm.c. ONLY USED
* IF FDEBUG != 0.

* 0 -> DO NOT PRINT TABLES WITH EACH FTM LOOP
* 1 => PRINT TABLES AND STOP FOR STDIN
* CONFIRMATION WITH EACH FTM LOOP
* IN THIS CASE THE FTM MUST BE RUN IN
* THE FOREGROUND.

* 2 => PRINT TABLES WITH EACH FTM LOOP AND
* CONTINUE. IN THIS CASE, MAKE THE
* #define FTM SLEEP TIME A LARGE VALUE */

#define FTMPORT 8877 /* THIS PORT MUST BE AVAULABLE ON ALL SYSTEMS 'I
#define FTMPATH "/u/auvusersl/auvschi/ftm/"

/* FTMPATH is the path to the FTM modules.
* This is usually file served between nodes

* in the FTM system. */
#define SOCKPATH "/tmp/auvschi/ftm/"

/* SOCKPATH is the path used by the FTM

" system for UNIX sockets and debugging
* output. This is usually local to each
* node for performance, especially in debug
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" mode. WARNING - If this directory is not
" accessible the FTM system will not work and
* may not be able to tell you why it fails. */

/* -----------------------------------------------------------------------

#define printe(xl); fprintf (stderr, xl);
#define printe2(xl,x2); fprintf (stderr, xl,x2);
#define printe3(xl,x2,x3); fprintf (stderr, xl,x2,x3);
#define printe4(xl,x2,x3,x4); \

fprintf (stderr, xl,x2,x3,x4);
#define printe9(xl,x2,x3,x4,x5,x6,x7,x8,x9); \

fprintf (stderr, xl,x2,x3,x4,x5,x6,x7,x8,x9);

#define FTMFILE "ftms.lis"
#define BKUPFILE "ftmbkup.lis"

#define FTMPROG "ftm"
#define TIMEOUTPROG "timeout"
#define DAEMONPROG "rundaemon"
#define MAXNAP.*ILEN 20 /* MAX LENGTH OF ADVERTISED NAME
#define FTM WAIT CONNECT 60 /* MAX TIME FOR FTMS TO CONNECT TO EACH

* OTHER (SEC) */
#define FTMSLEEPCONNECT 50000 /* MAX TIME FOR AN FTM TO SLEEP BETWEEN

* TRIES TO CONNECT TO ANOTHER FTM

* (micro-SEC) */
#define FTMSLEEPTIME 2000000 /* FTM SLEEP TIME BEFORE A LOOP IS FORCED

* SO AS TO ASSURE NO LOST INTERRUPT AND TO
* CHECK FOR CONNECTED FTM AND APPLICATION

" ABNO!1AT. TEPMINATIONS (micro-SEC) */
#define IC WAIT CONNECI 10 /* MAX TIME FOR IC TO CONNECT TO LOCAL FTM

* (SEC) */
#define ICSLEEPCONNE7T 25000 /* MAX TIME FOR AN IC TO SLEEP BETWEEN

* TRIES TO CONNECT TO LOCAL FTM
" (micro-SEC) */

#define ICSLEEPTIME 2000000 /* IC SLEEP TIME BEFORE A LOOP IS FORCED SO

* AS TO ASSURE NO LOST INTERRUPT
* (micro-SEC) */

#define MSG2 SLEEP 250000 /* SLEEP TIME WHILE WAITING FOR REMAINDER
" OF MSG TO ASSURE NO LOST INTERRUPT
* (micro-SEC) */

#define MSG2 WAIT 10 /* MAX TIME BETWEEN RECEIPT OF SECTIONS OF

* I MSG BEFORE SOCKET ASSUMED DOWN
" (SEC) */

#define MSG-LIMIT 10 /* IMMEDIATELY INTERRUPT ICs IF THIS MANY
* MESSAGES HAVE BEEN SENT TO THE CONNECTED
* APPLICATIONS SINCE LAST INTERRUPT */

#define PACKETSIZE 1024 /* SIZE OF PACKET (BYTES). THE VALUE (1024)
* APPEARS TO BE OPTIMAL ON OUR SUN SPARC
* ETHERNET BASED NETWORK. IF ZERO, MSG
* PORTION OF MESSAGES WILL NOT BE PADDED. */

#define MAXMSGLEN 2048 /* MAX SIZE OF USER MSG (BYTES). */
#define TAB 0x09
#define NL OxOA

#define LOOP for ( ;

extern void contimouto;
extern void getmsgso;
extern void msgdump();
extern void nlineo;
extern void setcapo;

extern char *strlcpy();
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struct ftm time ( /* TO PASS TIMEOUT VALUES THROUGHOUT */
struct timeval timeval perm, /* THE THE FTM & IC ROUTINES

timeval temp,
msgtimeperm,
msgtime temp;

fd-set readfds-perm,

readfds temp;
int widthfds;3;

struct ftmtable /* ENTRY FOR A NODE IN FTM SYSTEM */
char mach(MAXHOSTNAMELEN + 1]; /* node name
u_long addr; /* internet address

int sock; /* logical socket number3;

struct namtable /* ENTRY FOR AN ADVERTISED NAME */
char name[MAXNAMELEN + 1); /* advertised name */
char status; / connection status of application */

int Isock; /* socket number from local ftm */
int fsock; /* sck num: this ftm to local ftm '/
int pid; /* process id of application
int bkupftm; /* logical socket of backup ftm */

int msgs; /* num of msgs since last signal */
struct namtable *next; /* ptr to next namtable entry */
struct namtable *prev; /* ptr to prey namtable entry */3;

struct msgbuf ( /* ENTRY FOR A MSG IN MSG LIST */
struct msgbuf *next; /* ptr to next msgbuf entry */
struct msgbuf *prev; /* ptr to prey msgbuf entry */
char cmd[7J; /* message type */
char from; /* message from FTM or IC ? */
char status[6]; /* action taken on msg so far */
char nameto[MAXNAMELEN + 1]; /* target of message */
char name from(MAXNAMELEN + 1]; /* originator of message

char seqnum[12]; /* message sequence number */
char errno[12]; /* error code for exceptions */
char mlen(12); /* length of the n..xt field */
char msg(MAXMSGLEN + 1]; /* data portion of the message */

3;
#define MSGBUF HDR 8
#define MSGBUF MAX (sizeof ( truct msgbuf))
#define MSGBUFMIN (MSGBUFMAX - MAXMSGLEN)



223

- adv. c

- Purpose - called by application program to advertise the name by which -

- the program will be known throughout the system.

#include "header.h"

struct msgbuf *msgfirst,
*msglast;

char intadvyet = IN',
int.,yname[MAXNAMELEN + 1),
ftm ic = III;

int ftmsock,
intseqnum,
intpidme = -1,
int msgs; /* ------ DUMMY FOR EXTERN IN SEND-MSG---

int namlookup()
/*---------DUMMY FOR EXTERN IN SENDMSG --

struct ftm time ftmtime;

static char canrepeat;

int adv(name)
char *name;

int rc,
err,
oldmask,
advxo;

if ((intpidffe !- getpido) II(intadvyet == I)

msgfirst NULL;
msglast =NULL;
intadvyet = IN';

ftmsock =-2
mntseqnum z1;
intpidme =getpido;
canrepeat =II

if Cmntadvyet -= 'R')

intadvyet = IN';

if (signal(SIGPIPE, SIG IGN) ==BADSIG)
perrorC"ADV: SIGPIPE SIGNAL");
errno = EFAULT;
return (-l);

if (signal(SIGUSRl, getmsgs) == BADSIG)
perror("ADV: S.ZGUSR1 SIGNAL");
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errno =EFAULT;
return(-)

oldmask = sigblock (sigmask (STGUSRi));
rc =advx(narne);
err =errno;

sigsetmask (oldmask) ;
errno = err;
return (rc);

static int advx(nane)
char *name;

struct sockaddr un server;

struct rnsgbuf *mptr,
*rnptr2;

int wait,
len;

char hbuf(MAXHOSTNAMELEN + 1),
fnare(MAXPATHLEN + 1],
capniame(MAXNAMELEN + 1);

if (strnlen(name, 1) ==0)
crrno = EINVAL;
return (-I);

if ((strnlenl(name, 2) ==1) && (name[0J= ')

errno = EINVAL;
return (-I);

if (intadvyet == 'Y')
errno = EALREADY;
return (-1);

if (canrepeat == 'NO)
printeV"ADV: PREVIOUS ERROR PRECLUDES REPEAT CALL\n');
errno = EFAULT;
return (-I);

bzero (capname, sizeof (capnarne));
strlcpy(capnamre, name, sizeof(capnane) - 1);
setcap(capname, sizeof(capnane) - 1);

#if IDEBUG
printf ("DEBUG: ADV: CAPNAME = %s\n", capnarc);

#endif

bzero(hbuf, sizeof(hbuf));
if (gethostname(hbuf, sizeof(hbuf) - 1) < 0)

peror ('AOV: GETHOSTNAME");
errno = EFAULT;
return (-l);

bzero(fname, sizeof(fname));

strcpy(fname, SOCKPATH);
strcat (fname, FTMPROG);
strcat (fname, hbuf);
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strcat(fname, ".sck");

#if IDEBUG
printf("DEBUG: ADV: FNAME = %s\n", fname);

#endif

wait =0;

LOOP
server.sun family -Al' UNIX;
strcpy(server.sun path, fname);

if ((ftmsock = socket(AFUNIX, SOCKSTREAM, 0)) < 0)

perror("ADV: SOCKET");
return (-I);

if (connect(ftnsock, &server, strlen(server.sun path) + 2) < 0)
if ((errno =- EWOULDBLOCK) II(errno -= ECONNREFUSED)

11 (errno -= ENOENT))

if (wait * IC SLEEPCONNECT > ICWAITCONNECT * 1000000)
printe ("ADV: EXCESSIVE WAIT TO CONNECT TO FTl4~n");
close (ftmsock) ;
errno = EFAULT;
return (-1);

else
close (ftmsock);
usleep (ICSLEEP CONNECT);
++wait;

continue;

else
perror("ADV: CONNECT');
close (ftmsock);
errno = EF'AULT;
return (-1);

else
break;

if (fcntl(ftrnsock, F SETFL, FNDELAY) < 0)
perror("ADV: FCNTL",);
close(ftmsock);
errno = EFAULT;
return (-I);

if (setsockopt(ftmsock, SOLSOCKET, SOK1EPALIVE, (char *)0, 0) < 0)
perror ("AOV: SETSOCKOPT-l");
errno = EFAULT;
return (-l);

if (setsockopt(ftmsock, SOLSOCKET, SODONTLINGER, (char *) 0, 0) < 0)

perror ('ADV: SETSOCKOPT-2");
errno = EFAULT;
return (-1);

if M(mptr = (struct msgbuf *) malloc(MSGBUF MAX)) == NULL)
HI ((rnptr2 = (struct msg0Ut 1) ma11ocNSGBUF-'MAX)) == NULL))

perror ("AOV: MALLOC");
if (mptr !=NULL)

free((char *) mptr);
close(ftmsock) ;
errno = EFAULT;
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return (-I);

bzero((char Imptr, MSGBUF MAX);
bzero((char *)rptr2, MSGBUF MAX);

strcpy (mptr->cmd, "ADV );
mptr->from =''

sprintf(mptr->status, "%d", -1);
strcpy(mptr->name to, ... );
strcpy(mptr->name from, capnarne);
sprlntf (mptr->seqnum, "%d",* intseqnum);
++intseqnum;
strcpy~mptr->errno, "0");
sprintf(mptr->msg, "%d", getpid 0);
sprintf~mptr->mlen, "%d", strlen(mptr->msg));

len = MSGBUF-MIN - MSGBUF -HDR + strlen(mptr->msg);
if ((send msg(ftmsock, mptr->cmd, len)) < 0)

free((char Imptr);
free((char Imptr2);

close(ftmsock);
perror("ADV: SENDMSG");
errno = EFAULT;
return (-I);

canrepeat = IN';

#if IDEBUG
printf("DESUG: ADV: THE ADV MOSSAGE HAS BEEN~ SENT TO LOCAL FTM %~"

ftmsock);
printf("DE8UG: ADV: NOW WAIT FOR THE ADVOK MESSAGE FROM THE FTIMn');

#endjf

ftmtime.widthfds = getdtablesize 0;
FDOZERO (& fLtm e readfdsperm);
FD SET(ftmsock, &ftmtime.readfdsperm);
ftmtime.timevalperm.tvsec = ICSLEEP -TIME /1000000;
ftmtime.timevalperm.tvusec = ICSLEEP -TIME % 1000000;
ftmtime.msgtieperm.tv-sec = MSG2 SLEEP /1000000;
ftmtire.msgtimeperm.tv usec = MSG2 SLEEP %1000000;

*LOOP UNTIL THE ADVOK MESSAGE IS RECEIVED

LOOP

getmsgs (-1);

if (ftmsock < 0)
errno = ENOTCONN;

return (-1);

if (findbuf("ADVNO,"", mptr2) < 0)(
if (errno != EWOULOBLOCK)(

pr.tc(,"ADV: B3AD RETURN F R 0! [MN".D U r -I
free((char Imptr);
free((char Imptr2);
close (ftmsock);
errno =EFAULT;

return (-I);
else;
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else
sscanf(mptr2->errno, "Wd", &errno);

free((char *)mptr);
free(ichar *)mptr2);
return (-l);

if (findbuf("ADVOK", "", mptr2) < 0)
if (errno != EWOULDBLOCK)(

printe ('ADV: BAD RETURN FROM FINDBUF-2\n");
free((char *)mptr);
free((char *)mptr2);
close (ftmsock):
errno = EFAULT;
return (-I);

else;
else if Cstrcmp(rptr2->nameto, capname) !=0)

printe2("ADV: ADVOK NAME CHANGED To %s\n", mptr2->name to);
free((char ~)mptr);
free((char Imptr2);
close(ftmsock);
errno - EFAULT;
return (-l);

else if (strcmp(mptr->seqnum, mptr2->seqnum) != 0)
printe3("ADV: SEQNUM MISMATCH %s %s'\n", mptr->seqnum, mptr2->seqnum);
free((char Imptr);
free((char Imptr2);
close(ftmsock);
errno = EFAULT;
return (-l);

else
break;

bcopy((char *) &ftmtime.readfdsperm, (char I&ftmtime.readfds temp.
sizeof(struct fd set));

bcopy(Cchar *) &ftmtire.timevalperm, (char I&ftmtime.timevaltemp,
sizeof (struct timeval)) ;

select(ftmtime.widthfds, &ftmtime.readfds temp. NULL, NULL,
&ftmtime.tlrnevaltemp);

#if IDEBUG
printf("DEBUG: ADV: THE ADVOK MESSAGE HAS BEEN RECEIVED\n");

#endif

strcpy(intmyname, capname);
intadvyet = II
free((char *)mptr);
free((char Imptr2);
return (0);
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- conall.c

- Purpose -called by each FTM as part of initialization. Causes the FTMs -

- to allow 0-hop communication through connected sockets.-

#include "header.h"

int conall()

struct sockaddr in server,
client;

struct hostent *hp;

FILE *filex;

int addrme,

i,
i2,

s2,
len;

char buf(MAXHOSTNAMELEN + 1),
fname(MAXPATHLEN + 13,
found;

struct ftmtable *ftmptr2;

extern struct ftmtable *ftrnptr;
extern int ftmsize,

ftmme;

if (gethostname(buf, sizeof(buf)) < 0)
perror('CONALL: GETHOSTNAME");
return (-1);

buftsizeof(buf) - 1] = OxOO;

if ((hp =gethostbyname(buf)) == NULL)
perror ("CONALL: GETHOSTBYNAME-l ");

printe2 ('CONALL: COULD NOT LOCATE MACHINE NAME: %s'n", huf);
return (-1);

Ielse if (hp->h length != 4)
printe2('CONALL: ILLEGAL NET ADDR LENGTH-l %cf~n", hp->h length);
return (-I);

else if (hp->haddrtype != AFINET)
printe2 ("CONALL: ILLEGAL ADDRTYPE-l %d\n", hp->h addrtype);
return (-l);

else
addrme =*(jflt *) hp->bh eddr;

bzero(fname, sizeof(fname));
strcpy(fname, FTMPATH);
strcat (fnarne, FTMFILE);

if ((ilex = fopen(fname, "r")) == NULL)

perror("CONALL: OPEN");
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return (-l);

ftrnsize - 0;
while (fgets(buf, sizeof(buf), filex) !=NULL)

if (buflO] --=\1

continue;
if (buf(O] -- 1*1)

while (buflstrlen(buf) - 1) !- 1\n1)

if (fgets(buf, sizeof(buf), filex) =- NULL)

printe2 ("CONALL: ERROR DURING FIRST READ OF %sVn", FTMFILE);
return (-I);

cont inue;

++ftmsize;

if (ftrnsize < 1)(
printe2("CONALL: FILE ftms.lis SIZE = %d NOT ACCEPTABLEWn, ftrnsize);
return (-l);

if ((ftmptr (struct ftmtable *) ralloc(ftmsize * sizeof(*ftrnptr)))

-= NULL)
perror("CONALL: MALLOC");
return (-1);

else
bzero((char *) ftmptr, ftmsize *sizoof(*ftmptr));

rewind(filex) ;

for (ftmptr2 - ftznptr; ftmptr2 < ftmptr + ftrnsize; ++ftmptr2){
while (fgets(buf, sizeof(buf), filex) !=NULL)

if (buf(O) -- I'%jl)

continue;

if (buf[O) == '*I) (
while (buffstr1~en(buf) - 1] =1\1

if (fqets(buf, sizeof(buf), filex) -- NULL)

printe2('CONALL: ERROR DURING SECOND READ OF %s'vn", FTMFILE);
return (-1);

continue;

if ((buf(0] == 1*1) 11 (buffO] == l)

continue;
nline(buf, sizeof(buf));
if (strcrnp(buf, "cssun0") -= 0)

strcpy(buf, "cssun");
strcpy(ftmptr2->nach, buf);

ftmptr2->sock = -2;
break;

if (ftmptr2->sock -= 0)

perror('CONALL: READ");

return (-1);

ftmxne=-1
for (i1 0; 1 < ftmsize; ++i)(

if ((hp = gethostbynarne((ftmptr + i)->mach)) ==NULL)

perror("CONALL: GETIIOSTBYNAME-2");

printe2("CONALL: COULD NOT LOCATE MACHINE NAME: %s\na",

Cftmptr + i)->mach);
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return (-l);
else if (hp->h length !- 4)

printe2 ("CONALL: ILLEGAL NET ADOR LENGTH-2 - %a~n", hp->h length);
return (-l);

else if (hp->haddrtype !- AFINET)
printe2 ("CONALL: ILLEGAL ADDRTYPE-2 =%a'~n", hp->haddrtypc);
return (-1);

else
bcopy(hp->haddr, (char *) 6(ftmptr + i)->addr, 4);
if (strlen(hp->h name) > MAXHOSTNAMELEN)(

printe2 ("CONALL: MACH NAME %s IS TOO LONG\n", hp->hnane);
return (-I);

strcpy((ftrnptr + i)->mach, hp->h name);

if (*(int *) hp->haddr -- addrme)
if (ftmme !- -1)

printe2C"CONALL: HOST: %s IS LISTED TWICE IN ftms-lis FILEWn",
Cftmptr + i)->mach);

return (-I);
Ielse(

(ftrnptr + i)->sock =-1;
ftmne

if (ftrnme ==-1)

printeC"CONALL: THIS HOST NOT FOUND IN FILE\n");
return (-1);

if (fclose(filex) != 0)
perror("CONALL: CLOSE FILE");
return (-1);

if ((sl socket(AF -INET, SOCKSTAEAM, 0)) < 0)
perror("CONALL: SOCKET-1");
return (-1);

if (signal(SIGALRM, contimout) -= BADSIG)
perror ("CONALL: SIGNAL-i");
return (-1);

a larm (FTM -WAIT-CONNECT);
bzeroC(char *) &server, sizeof(server));
server.sin port = FTMPORT;
if (bind(sl, (struct sockaddr 6 server, sizeof(server)) < 0)

perror("CONALL: BIND");
printe2('CONALL: BIND ADDR =%dn, FTMPORT);
return (-I);

if (listen(sl, 5) < 0)
perror("CONALL: LISTEN");
return (-l);

for (i = 0; 1 < ftrnme; ++i)
bzero((char *) &client, sizeof(client));

len = sizeof (client);
if ((s2 = accept(sl, &client, &len)) < 0)

perror("CONALL: ACCEPT");
return (-I);

Ielse if (fcntl(s2, FSETFL, FNDELAY) < 0)
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perror (CONALL: FCNTL-l ");
return (-I);

else if (setsockopt(s2, SOLSOCKET, ZOKEEPALIVE, (char 10, 0) < 0)
perror('CONALL: SETSOCKOPT-l");
return (-I);

else if Csetsockopt~s2, SOL SOCKET, SODONTLINGER, (char ")0, 0) < 0)
perror("CONALL: SETSOCKOPT-2");
return (-1);

else(

found -'N';
for (i2 - 0; i2 < fimme; ++i2)

if ((ftmptr + i2)->addr -- *(u-iong *) & client.sin-addr)(
if ((ftmptr + 12)->sock !--2)(

printe("CONALL: DUPLICATE TABLE ENTRY FOUND\n":;
return (-1);

Ielse[
(ftmptr + i2)->sock = s2;
found = II

break;

#if FDEBUG
printf("DEBUG: CONALL: ACCEPT FOR MACHINE %sn"

(ftmptr + 12)->mnach);
#endjf

if (found == IN')

printe2("CONALL: ENTRY NOT FOUND IN TABLE -ADOR: %Xn",
*(u long *) & client.sin-addr);

return (-1);

if (close(sl) < 0)

perror("CONALL: CLOSE SOCKET");
return (1

for (i =ftmxne + 1; i '< ftmsize; ++i)(
LOOP

if ((si = socket(AFINET, SOCKSTREAM, 0)) <C 0)
perror("CONALL: SOCKET-2");
return (-1);

else(
bzero((char *) &server, sizeof(server));
server.sin family = AFINET;
server.sin port =FTMPORT;
bcopy((char *) &(ftmptr 4 i)->addr, (char *) &server.sinaddr, 4);
if (connect (si, &server, sizeof(server)) < 0)

if ((errno != ETIMEDOUT) && (errno 1=ECONNREFUSED)){
perror("CONALL: CONNECT");
return (-I);

else(
close (sl);
usleep CFTM SLEEP CONNECT);
continue;

if (fcntl(sl, FSETFL, FNDELAY) <C 0)

perror("CONALL: FCNTL-2");
return (-l);

else if (setsockopt
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(sl, SOL- SOCKET, SO-KEEPALIVE, (char *) 0, 0) < 0)
perror("CONALL: SETSOCKOPT-3");
return (-1);

else if (setsockopt(sl, SQLSOCKET, SODONTLINGER, (char *)0, 0)
< 0) (

perror(CCONALL: SETSOCKOPT-4");
return (-1);

else
break;

(ftmpir + i)->sock - si;

#if FOEBUG
printf('DEBUG: CONALL: CONNECT TO MACHINE =%s\n", (ftmptr + i)->mach);

#endjf

a la rm (0)
if (clignal(SIGALRM, SIGIGN) =H ADSIG)

perror("CONALL: SIGNAL-2");

return (-1);

return (0);

- contiMOUt.c

- Purpose -Stub to handle timeouts while l'TMs are waiting to connect.

#include 'header.h"

void contirout()

printcC'"CONTIMOUT: FTM TIMED OUT WAITING TO CONNECThn');
printe2("CONTIMCUT: FTMWAITCONNECT TIME - %d SECS\n", FTMWAIT CONNECT);
exit(-I) ;
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- copycf.c

- Purpose -called by application program to copy a closed file to the

- current backup system.

#include "header.h"

int copycf(name, filename)

char *name,
*filename;

char tach(MAXHOSTNAMELEN + 1),
bkup[MAXHOS'iNAMELEN + 1),
shell commandfsizeof("rcp ")-I

+ MAXPATHLEN
+ sizeof C' ") - 1
+ MAXHOSTNAMELEN
+ sizeof(" :") - 1

+ MAXPATHLEN
+ 1

if ((strnlen(name, 1) == 0) 11 (strnlen(filename, 1) -= 0)
11 (strnlen(namc, MAXNAMELEN 4 1) ==MAXNAMELEN + 1)
11 (strnlen(filename, MAXPATHLEN + 1) ==MAXPATHLEN + 1))(

errno = EINVAL;
return (-I);

if (ftmwhere(name, mach, bkup) < 0)(
errno = ENOTCONN;
return (-l);

if (bkup(0] == OXOO)
errno = EWOULDBLOCK;
return (-I);

strcpy(shell command, "rcp")
strcat (shell command, filename);
strcat (shell command,"";
strcat (shell command, bkup);
strcat(shell command, ":);

strcat(shell-command, filename);

#if DEBUG
printf ("DEBUG: COPYCF: NAME = %s, BKUP =%s\n", name, b-.p);
printf("DEBUG: COPYCF: COMMAND = %s\n", shell-command);

#endif

return (system(shell command));
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- ffget c

Purpose -called by an FTM to gather any pending messages from other
- connected FTMs.

#include "header.h"

int ffget()

S,

!sock,
pid,
th ispass,
ailpasses,
bkupftm;

struct msgbuf *mptr2;

extern struct ftmtable *ftmptr;
extern int ftmsize;

extern struct ftm time ftmtime;

if ((mptr2 = (struct msgbuf *) mallloc(MSGBUF MAX)) ==NULL)

parror("FFGET: MALLOC");
errno =EFAULT;

return (-I);

ailpasses =0;

LOOP(
thispass = 0;
for (i = 0; i < ftmsize; +fi)

s =(ftmptr + i)->sock;
if (s < -2)(

if (ftmlsdown(ftmptr + i) < 0)
printe("FFGET: BAD RETURN FROM FTMISDOWN-l\n');
free((char *) mptr2);
errno = EFAULT;
return (-I);

Ielse(
(ftmptr + i)->sock = -2;
continue;

if (s >= 0)
bzero(mptr2->cmd, MSGBUF -MAX - MSGBUFHOR);
if (recvmsg(s, mptr2->cmd, MSGBUFMAX - MSG1BUF NOR) < 0)

if (errno == EWOULDBLOCK)
continue;

else if (errno ==kNUICONN)

#if FDEBUG
printf("DEBUG: FFGET: SOCKET CLOSED = %doVn", s);

#endif

close(s);
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(ftmptr + i)->sock = -3 - s;
if (ftmisdown(ftmptr + i) < 0)

printe ('FFGET: BAD RrTURN FROM FTMISD0WN-2\n");
free((char *) mptr2);
errno = EFAULT;
return (-I);

Ielse(
(ftmptr + i)->sock = -2;
continue;

else
printe("FFGET: BAD RETURN FROM RECV MSG~n");
free((char *) rnptr2);

errno = EFAULT;
return (-1);

#if FDEBUG
printf ("DEBUG: FFGET: MSG FOUND =%s %c %s %s %S %s %s %s %S\'V'

mptr2->cmd,
mptr2->from,
mptr2->status,
mpt r2->narne to,
rnpt.r2->namre from,
rnptr2->seqnun,
rptr2->errno,

mptr2->mlen,
mptr2->msg);

#endif

if (strcmp(mptr2->cmd, "ADV") ==0)

sscanf(mptr2->msg, "%d %d %d", &pid, &lsock, &bkupftm);
sprintf(mptr2->msg, "%d %d %d %d", pid, isock, bkupftm, s);
sprintf(mptr2->mlen, "%d", strlen(mptr2->nsg) );

if (msgtolist(nptr2) < 0){
printe ("FFGET: BAD RETURN FROM MSGTOLISTIM");
free((char *) mptr2);
errno = EFAULT;
return (-1);

++thispass;

alipasses += thispass;
/*---ONLY ALLOW ONE MESSAGE PER SOCKET PER FTM MAIN LOOP PASS---

if (thispass == 0)

break;

free((char *) mptr2);
return (ailpasses);
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f findbuf c

- Purpose - searches the linked list of received messages for one that -

meets the specifications requested.

#include "header.h"

int flndbuf(cmd, name from, mybuf)
char *cmd,

*name from;

struct msgbuf *mybuf;

int msglen;

struct msgbuf *mptrl;

extern struct msgbuf *msgfirst;

for (mptrl = msgfirst; mptrl != NULL; mptrl =mptrl->next)
if ((cmd[O] ! OxOO) && (strcmp(crid, mptrl->cmd) !=0))

continue;
if ((name from[O) != OxOC) && (strcmp(name from, mptrl->name from) 0))

continue;
break;

if (mptrl -= NULL)
errno = EWOULDBLOCK;
return (-1);

sscanf(mptrl->mlen, 'Id", &msglen);
msglen += MSGBUF - IN;
bcopy((char *) mptrl, (char *)mybuf, msglen);

if (msgfrmlist(mptrl) < 0)
printe("FINDBTh': BAD RETURN FROM MSGFRMLIST\.n");
return (-I);

return (0);
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f from. c

- Purpose -called by application program to attempt to receive a message.-

- The desired message sender may be specifically requested. -

#include "header.h"

int from(name, msq, msglen)

char *name,
*msg;

int msglen;

int rc,
err,
oldmask,
fromx()

oldmask =sigblock (sigmask (SIGUSRI));

rc =fromy(name, msg, msglen);
err =errno;

sigsetmask (oldmask);
errno = err;
return (rc);

static mnt fromx(name, msg, msglen)
char *name,

*msg;

int msglen;

int minmsc~len;

char capname(MAXNAMELENl + 1];

struct msgbuf *mptr2;

extern int ftmsock,
intpidme;

extern char intadvyet;

extern struct msgbuf *msgfirst;

#if IDEBUG
printf ("DEB3UG: FROM: SEARCH FOR NAME =%s~n", name);

#endif

it (strnlen(name, 1) == 0)
errno = EINVAL;
return (-I);

if (msglen < 0)
errno = EINVAL;
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return (-1);

if ((intadvyet 'Y') II(intpidme getpido))
printe("FROM: ADV NOT SUCCESSFULLY COMPLETEDVn");
errno - EFAULT;
return (-I);

getmsgs (-2);

bzero(capnane, sizeof(capname));
strlcpy(capnane, name, sizeof(capname) -1);

setcap(capname. sizeof(capnane) - 1);
if ((capname[Ol == *#) && (capname[l] = OXOD))

capname[O) OxOO;

if ((mptr2 = (struct rnsgbuf *) ralloc(MSGBUF MAX)) ==NULL)

perror("FROM: MALLOC");
errno = EFAULT;
return (-I);

bzero((char *) mptr2, NSGBUF MAX);

if (findbuf('TO", capnane, mptr2) < 0)
if (errno !=EWOULDBLOCK)[

printe ("FROM: BAD RETURN FROM FINDBUFMn");
freeC(char *) mptr2);
errno = EFAULT;
return (-1);

free((char *) mptr2);
if (ftmsock < 0)

errno = ENOTCONN;
else

errno = EWOULDBLOCK;
return 1-1);

#if IDEBUG
else

printf("DEBUG: FROM: MSG FOUND =%s %c %s %s %s %s %s %s %s~n",
mptr2->cmd,

rptr2->from,
mptr2->status,
mptr2->name to,
mptr2->name from,
mptr2->seqnum,
rnptr2->errno,
rnptr2->mlen,

mptr2->msg);
#endif

if (capname(0] == 0x00)
strcpy(name, mptr2->name from);

sscanf (mptr2->mlen, "%d", &minmsglen);
if (msglen < minmsglen)

minmsglen = msgien;
bcopy(mptr2->msg, msg, minmsglen) ;
free((char *) rnptr2);

return (minmsglen);
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- ftm.c

- Purpose -the main routine for the FTM (fault tolerant monitor).

#include "header.h"

struct ftmtable * ftmpt r;

int ftmsize,
ftrnme,
intmsgs = 0;

char ftm ic = IF';

struct namta~le *nacfirst = NULL,

*namlast = NULL;

struct msgbuf *msgfirst = NULL,
'msglast = NULL;

struct ftm time f~,time;

static void reprrtsig(sig)
int s.:g;

printe2("FTM: KILL SIGNAL RECEIVED =%d&n', sig);
exit (-1);

static void kill-sigO

printe ("FTM: KILL SIGNAL (SIGTERM OR SIGINT) RECEIVED\n");
exit (-1);

int main(argc, argv)
int argc;
char **argv;

struct sockaddr un server,
client;

sI,
s2,
len,
th ispas s,
num,

char fnarnefMAXPATHLEN + 1];

struct namtable *nptr;

fd-set exceptfds;
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if ((argc > 1)
&& ((strcmp(argvl]. "'r") =0) 11 (strcmp(argvtl3, "R") 0)))fl

FILE *ftemp,
*ftemp2;

char thishost[MAXHOSTNAMELEN + 2];
strcpy(thisho3t, "_)

gethostname(thishost + 1, sizeof(thishost) - 1);
strcpy(fname, SOCKPATI);
strcat (fnarne, "stdxxx");
strcat (fname, thishost);
unlink(fnane);
if ((ftemp2 = fopen(fname, "w")) =~NULL)

exit (-1);
strcpy(fname, SOCKPATH);
strcat(fname, "stdout");
strcat (fnarne, thishost);
unlink(fnane);
fclose (stdout);
if ((temp = fopen(fname, "w")) =- NULL)

exit (-1);
if (fileno(ftenp) 1

if (dup2(fileno(ftenp), 1) < 0)
exit (-1);

else

fclose (fternp);
strcpy(fname, SOCKPATH);
strcat (fname, "stderr");
sircat (fname, thishost);
unlink (fname);
fclose (stderr);
if ((temp --fopen(fnaie, "w")) ==NULL)

exit (-1);
if (fileno(ftenp) != 2)

if (dup2(fileno(ftemp), 2) < 0)
exit (-1);

else
fclose (ftemp);

fclose(ftemp2);

for (i = 1; i <= sizeof(int) 8; ++i)
if (signal(i, report slg) ==BADSIG); /* WE REALLY DON'T CARE ~

if Csignal(SIGINT, kill sig) ==BADS11,)

perror("FTM: SIGINT SIGNAL");
exit (-1);

if (signal(SIGPIPE, SIG -IGN) == BADSIG)
perror("FTM: SIGPIPE SIGNAL");
ext (-)

if (signal(SIGTERM, kill sig) == BADSIG)
perror("FTM: SIGTERM SIGNAL");
exit (-l);

if (signal(SIGCONT, SIC DFL) -- BADS10%
perror("FTM: SIGCONT SIGNAL");
exit (-1);

if (signal(sIGCllLD, SIG DFL) == BADSIG)
perror("FTM: SIGC[]LD SIGNAL");
exit (-1.);
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if (signal(SIGWINCH, SIG DFL) -- BADSIG)

pcrror("FTM: SIGWINCH SIGNAL");
exit (-1);

if (conall() < 0)

printe C"FTM: BAD RETURN FROM CONALL\n");
exit C-i);

bzero(fname, sizeof~fnamc));
strcpy~fname, SOCKPATH);
strcat (fname, "ftrn") ;
strcat(fnane, (ftmptr + ftmme)->mach);
strcat~fname, ".sck");

bzero((char *) &server, sizeof(server));
server.sun-family - AFUNIX;
strlcpy(server.sun path, fnazne, sizeof(server.sun path));

if ((si socket(AF -UNIX, SOCK-STREAM, 0)) < 0)
perror("FTM: SOCKET");

exit (-1);

unlink(fname);

if (bind(sl, (struct sockaddr *) & server, strlen(fname) + 2) < 0)
perror("FTM: BIND");

printe2("FTM: FAILED ATTEMPT TO BIND UNIX SOCKET =%s\Vn", fname);
exit (-1);

if (listen(sl, 5) < 0)
perror("CONALL: LISTEN");
exit (-1);

if (fcntl(sl, FSETFL, FNDELAY) < 0)(
perror("FTM: FCNTL-1");
exit (-1);

ftmtirne.widthfds = getdtablesizeo;
FD -ZEROC&ftmtime.readfdsperm);

FD -SET (si, &ftmtime.readfdsperm);
for (i = 0; i <ftrnsize; ++i)

if C(ftrnptr + i)->sock >= 0)

FD -SET(C ftmptr + i) ->soc,., &ftmtine .readfds perm);
ftmtime.timeval perm.tv sec = FTMSLEEP TIME / 1000000;
ftmtime.timevalperm.tvusec = FTMSLEEP -TIME % 1000000;
ftrwtime.msgtimeperm.tvsec = MSG2 SLEEP / 1000000;
ftmtime.rsgtimeperm.tvusec = MSG2 SLEEP % 1000000;

printe2("FTM: %s FULLY CONNECTED - START APPLICATIONS\n",
(ftznptr + ftmo)->mach);

" REPEAT THE FOLLOWING LOOP FOREVER. IT ACCEPTS NEW CONNECTIONS FROM

" APPLICATIONS AND CHECKS FOR INCOMING MESSAGES FROM OTHER FTMs AND FROM ALL
" CONNECTED APPLICATIONS. WHEN IT RUNS OUT OF THINGS TO DO IT WATTS FOR SOMF

LOOP

#if FDEBUG
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int
static int yesno - FDEBUGLOOP;
struct namtable *nptrx;
struct msgbuf *inptrx;

if Cyesno -~ 1) (
printf(DEBUG: FTM: DUMP TABLES (0 or 1 or 2)? )

scanf("%d", &Yosno);
print f("\n");

if (Cyesno -- 1) 11 (yesno -= 2))
printf ("DEBUG: ['TM: SELRC -%ft", selrc);
if (selrc > 0)

for (i - 0; i < ftmtiine.widthfds; ++i)
if WFD -ISSETUi, &ftrtlme.readfds-tenp))

printf ("DEBUG: FTM: SET FD %~" i);
for (i - 0; 1 < ftmsize; ++i)

printf("DEBUG: ['TM: ['TM ENTRY = %s %X %d\n",
(ftrnptr + i)->mach,
(ftmptr + i)->addr,
(ftrnptr + i)->sock);*

for (nptrx = namfirst; nptrx !=NULL; npLrx = nptrx->neXL)
printf("DEBUG: ['TM: NAM ENTRY = %s %c %d %d %d %d %V"

nptrx->name,
nptrx->status,
nptrx->Isock,
nptrx->f sock,

nptrx->pid,
npt rx->bkupf ti,
nptrx->msgs);

for (iptrx - rnsgfirst; rnptrx != NULL; rnptrx = ,ptrx->next)
printf(

",DEBUG: ['TM: MSG ENTRY =%s %c %s %s %s %s %s %s %s\n",
rnptrx->cmd,

mpt rx->from,
mptrx->status,
rnptrx->name to.
np trx->name from,

inpt rx->seqnUm,
mptrx->errno,
inptrx->inlen,
mptrx->msg);

printf("DEBUG: ['TM: ['TMME= %d\n", ftmine);

#endif

thispass = 0;

selrc =-2;

LOOP

wait3((int *) NULL, WNOHANG, (struct rusage *) NULL);
if (Ws = accept(sl, (struct sockaddr *)&client, &len)) < 0)

if (errno != EWOULOBLOCK)

perror("'TM: ACCEPT");
exit (-1):

Ielse
break;

Ielse if (fcntl(s2, ['SET'L, ['NDELAY) < 0)

parror("['TM: FCNTL-2");
exit (-1);

Ielse if (setsockopt(s2, SOLSOCKET, SOKEEPALIVE, (char *) 0, 0)
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< 0){
perrorC"FTM: SETSOCKOPT-l");
exit (-1);

else if (setsockopt(s2, SOLSOCKET, SO DONTLINGER, (char ')0, 0)
< 0)

perror("FTM: SETSOCKOPT-2");

Ielse if (namtolist C"", s2, -1, 0, -1) < 0)

printei"'FTM: 13AD RETURN FROM NAMTOLIST'n");
exit (-1);

Ielse

#if FDEBUG
printf("DEBUG: FTM: ACCEPT ON SOCKET =%c~n", s2);

#endif

FDSET Cs2, &ftmtime.readfdsperm);
++thispass;

#if FOEBUG
if (thispass > 0)

printf("DEBUG: FTM: GOT %d ACCEPTSVi", thispass);
#endif

if ((num -ffgeto) < 0)
if (errno =- EWOULDBLOCK);
else if (errno -= ENOTCONN)

else
printe("FTM: BAD RETURN FROM FFGE7\M");
exit (-1);

else
thispass += nurn;

#if FDEBUG

if (nurn > 0)
printf('DEBUG: FTM: GOT %d ACTIONS FROM FFGE7\M', num);

#endif

if ((nurn = ifgeto) < 0)
if (errno -= EWOULDBLOCK); /* OK - NO MORE INT MSGS *
else if (errno == ENOTCONN); ft TAKEN CARE OF IN IFGET ~
else

printe("FTM: BAD RETURN FROM IFGET'\n");
exit (-1);

else
thispass += nurn;

#if FDEBUG
if (num > 0)

printf("DEBUG: FTM: GOT %d ACTIONS FROM IFGE'Thn", num);
#endif

if ((num = msghndl()) < 0)
printe("FTM: BAD RETURN FROM MSGHNDL\n");
exit (-1);

else
thispass += nurn;
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#if FDEBUG
if (nurn > 0)

printf("DEBUG: FTM: GOT id ACTIONS FROM MSGHNDL\n", nurn);
#endif

if ((int - sgs > MSGLIMIT) 11 (thispass -- 0))
for (nptr = namfirst; nptr !- NULL; nptr - npir->nt-Xt)

if (nptr->msgs > 0)

#if FDEBUG
printfC'DEBUG: FTM: SEND SIGUSRI TO PID %dn"

nprtr->pid);
#endif

kill (nptr->pid, SIGUSRi);
nptr->msgs =0;

intrnsgs - 0;

if (thispass -- 0)
bcopy((char *) &ftrtire.readfdspcrm, (char I&ftrntize.readfds temp,

sizeof(struct fd set))
bcopy((char *) &ftmtlme.readfds -permn, (char *)&exceptfds,

sizeof(struct Ed set));
bcopy((char *) &ftmtime.timevalpern. (char I&ftmtime.timeval temp,

sizeof(struct timcval));
if C Cselrc - select(ftmtime.widthfds, &ftmtime.rcadfds temp.

(fd -set *) NULL, &exceptfds,
&ftmtime.timevaltemp)) < 0)

perror("FTM: SELECT");
printe("FTM: TERMINATED BECAUSE OF ERROR ON SELECT CALIM");
exit (-1);
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- ftmclose.c

- Purpose - called by application program to invalidate its advertised -

-name. If the program terminates before it closes its

-advertised name, the fault tolerant system treats the

-t',trmination as abnormal.

#include "header.h"

int ftmclose()

mnt rc,
err,
oldmask,
ftmclosex();

oldmask =sigblock(sigmask(SIGUSR1));
rc =ftmclosexo;

err *errno;

sigsetmask (oldmask);
errno - err;
return (rc);

static mnt ftmclosex()

struct msgbuf *mptr,
*mptr2;

extern char intadvyet,
intmyname[MAXNAMELEN 1];

extern mnt ftmsock,
nt seqnum;

extern struct ftm time ftmtime;

if Cintadvyet !='Y')
printe ("FTMCLOSE: ADV NOT SUCCESSFULLY COMPLETEO\n");
errno = EFAULT;
return (-1);

if (ftmsock < 0)
errno = ENOTCONN;
return(-)

if (((mptr = (struct msgbuf *) malloc(MISGBUF -MIN)) -= NULL)
11 ((mptr2 = (struct msgbuf *) malloc(MSGBUF MIN)) -= NULL))

perror("FTMCLOSE: MALLOC");
if (mptr != NULL)

free((char *) mptr);
errno = EFAULT;

return (-l);
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bzero((char *) r, MSGBUFMIN);
bzero((char *)mptr2, MSGBUF WIN);

strcpy(mptr->cmd, "CLOSE");
mptr->from = I I';
sprintf(mptr->status, "W", -1);
strcpy(mptr->name from, intmyname),
sprintf(mptr->seqnumn, "W", intseqnum);
++intseqnum;
strcpy(mptr->errno, "0");
strcpy(mptr->mlen, "0");

if (send -msg(ftmsock, mptr->cnd, MSGBUFMIN - MSGBUF HOR) < 0)
if ((errno != EPIPE) && (errno !- ENOTCONN))

perror("FTMCLOSE: SEND-MSG");

free((char ~)mptr);
free((char *)rptr2);
errno - EFAULT;
return (-I);

#if IDEBUG

printf("DEBUG: FTMCLOSE: CLOSE MESSAGE SENT TO LOCAL FTM =%~', ftmsock);
printf("DEBUG: FTMCLOSE: NOW WAITING FOR CLOSOK\'n");

#endjf

*LOOP UNTIL THE CLOSOK MESSAGE IS RECEIVED

LOOP
getmsgs (-3);

if (findbuf("CLOSOK", "", rnptr2) < 0)
if (errno !=EWOULDBLOCK) (

printe("FTMCLOSE: BAD RETURN FROM FINDBUF-lI\n");
free((char *)mptr);
free((char *)mptr2,;
errno = EFAULT;
retu:n (-l);

else;
else if (strcmp(rnptr2->name -to, intmynane) != 0)

printe2('FTMCLOSE: NAME IN CLOSOK IS %s\n", mptr2->name to);
free((char *)mptr);
free((char I rptr2);
errno = EFAULT;
return (-I);

else if (strcmp(rnptr->seqnum, mptr2->seqnum) !=0)
printe3("FTMCLOSE: CLOSOK SEONUM MISMATCH %s %s\W", mptr->seqnum,

mptr2->seqnum);

free((char *) rptr);
free((chat 1) rptr2);
errno = EFAUL1;
return (-1);

else

#if IDEBUG
printf("DEBUG: FTMCLOSE: CLOSOK MESSAGE RECEIVEDVn");

#tendif

free((char *)mptr);
free((char *)mptr2);
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FDCLR(ftmsock, &ftrtime.readfdsperm);
close(ftrnsock);
ftmsock = -2;
intadvyet = II

return (0);

if (ftmsock <0)(
errno = EWOULOBLOCK;
return (-I);

bcopy((char *) &ftmtime.readfdsperm, (char *)&ftmtime.readfdsterp,
sizeof (struct fd-set) );

bcopy((char *) &ftmtime.timevalperm, (char I&ftmtime.timeval temp.
sizeof(struct timeval)) ;

select (ftmtirne.widthfds, & ftmt ime. read fdstemp, NULL, NULL,
&ftmtixme.timevaltemp);

- ftmisdcwn.c

Purpose - called by an ftm when it discovers than another ftm is no-
longer accessible.

#include "header.h"

int ftmisdown(fptr)
struct ftmtable *fptr;

int orig sock;

struct namtable *nptr;

struct msgbuf *mptr;

extern struct namtable *namfirst;

extern struct ftrn time ftmtime;

orig sock = -3 - fptr->sock;

close (orig-sock);
FDCLR(orig sock, &ftmtime.readfdsperm);

if ((mptr = (struct msgbuf *) malloc(MSGBUF MAX)) ==NULL)

perror ("FTMISDOWN: MALLOC");
errno = EFAULT;
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return (-1);

for (nptr = namfirst; nprtr !=NULL; nptr =nptr->next)
if (nptr->fsock !=orig sock)

break;
bzero((char *) mptr, MSGBUF -MAX);
strcpy(mptr->cmd, 'KILLN");
mptr->from = 'I';
strcpy(mptr->status, "-1');
strcpy(mptr->name from, nptr->name);
strcpy(mptr->seqnum, "0");
sprintf(mptr->errno, "W", -2);
sprintf (mptr->msg, "%X", nptr);
sprintf(mptr->mlen, 'Id", strlen(rnptr->msg))

#if FDEBUG
printf ('DEBUG: FTMISDOWN: MSG QUEUED: %s %c %s %s %s %s %s %s %s\n",

mptr->cmd,
mptr->from,
mptr->status,
mptr->name to,
Mptr->name from,
mptr->seqnum,
mptr->errno,
mptr->mlen,
mptr->msg);

#endjf

if (msgtolist(mptr) < 0)
printe("FTMISDOWN: BAD RETURN FROM MSGTOLIST~n');

free((char *) mptr);
errno = EFAULT;

return (-I);

free((char *) mptr);
return (0);
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ftmkill.c

Purpose - invoked to kill all running ftms on auvcl, auvc2,.... auvcl6. -

Uses shell script "rkill".

#include "header.h"

int main()

int rc;

char linetsizeof("rkill -TERM ) - 1
+ MAXPATHLEN /* FTM PATH */
+ 1];

strcpy(line, "rkill -TERM ");
strcat(line, FTMPATH);
strcat(line, FTMPROG);

if ((rc = system(line)) < 0)
perror("FTMKILL: SYSTEM(LINE)");

exit(rc);

ftmstart.c

Purpose - invoked to initiate the fault tolerant system. Causes daemons -

to start FTMs on all systems as defined in the ftms.lis file. -

#include "header.h"

int main()

int rc,
systems = 0;

char line(sizeof("rsh ") - 1
+ MAXHOSTNAMELEN

+ sizeot(" -n ") - 1
+ MAXPATHLEN /* DAEMON PATH 'I
+ 1
+ MAXPATHLEN /* FTM PATH */

sizeof(" r") - 1
+ 1];
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char ftmsfile[MAXPATHLEN + 1],
thishost[MAXHOSTNAMELEN + 1),
hostrne[MAXHOSTNAMELEN + 1;

struct hostent *hp;

FILE *fjlein;

if (gethostname(hostne, sizeof(hostie)) < 0)
perror ("FTMSTART: GETHOSTNAME");
exit (-1);

hostme(sizeof(hostne) - 1) = OxOO;
if ((hp = gethostbyname(hostne)) =- NULL)

perror("FTMSTART: GETHOSTSYNAME-l");
exit (-1);

else if (hp->h length != 4)
printe2("FTMSTART: ILLEGAL NET ADOR LENGTH-i %d\n", hp->h length);
exit (-1);

else if (hp->haddrtype !=AFINET)
printe2('FTMSTART: ILLEGAL ADDRTYPE-l = %d\.,), hp->haddrtype);
exit (-1);

strcpy(ftmsfile, FTMPATH) ;
strcat (ftmsfile, FTMFILE);
if ((filein = fopen(ftmsfile, "r")) == NULL)

perror("FTMSTART: INPUT FILE FOPEN ERROR");

exit (-1);

while (fgets(thishost, sizeof(thishost), filein) 1=NULL)
if (thishost(O) == n'

continue;
if (thishost(O) ~~

while (thishost~strlen(thishost) - 1) ~
if (fgets(thishost, sizeof(thishost), filein) ==NULL)

printe2("FTMSTART: ERROR DURING READ OF %snFTNFILE);
exit (-1);

continue;

nline (thishost, sizeot (thishost)) ;
strcpy~line, "rsh ");I

strcat(line, thishost);
strcat(line, " -n")

strcat(line, FTMPATH);
strcat (line, DAEMONPROG);
strcat(line, "")
strcat (line, FTMPATH) ;
strcat (line, FTMPROG);
strcat(line, "r);

if ((rc = forko) < 0)
perrorC"FTMSTART: FORK");
exit (-1);

Ielse if (rc == 0)
printe2("FTMSTART: ABOUT TO START FTM ON %sVn', thlShosL);
if (Crc - systein~line)) != 0)

perror ("FTMSTART: SYSTEM (LINE)");
exit Crc);

++systemns;
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fclose(filein);

if (systems == 0)
printe("FTMSTART: EMPTY FTMS.LIS FIL .);

exit (-i);

exit (0);

- ftmstatus.c

- Purpose - called by application program to retrieve global status
information from the local FTM.

#include "header.h"

int ftmstatus(pnum, sunstat, mirror)

int pnum,
*sunstat,

*mirror;

/,

sunstat: BIT 0 => auvsunO
BIT 1 => auvcl
BIT 2 => auvc2
BIT 3 => auvc3

BIT 4 => auvc4
BIT 5 => auvc5
BIT 6 => auvc6

BIT 7 => auvc7
BIT 8 => auvc8
BIT 9 => auvc9

BIT 10 => auvcl0
BIT 11 => auvcll

BIT 12 => auvcl2
BIT 13 => auvcl3
BIT 14 => auvcl4
BIT 15 => auvcl5

BIT 16 => auvcl6
BIT 17 => auvsunl

mirror == 0 => DRIVE 0 DOWN * MEANINGLESS UNTIL DISK MIRRORING INSTALLED

1 >= DRIVE 1 DOWN
== 2 >= BOTH DRIVES UP

*/
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int rc,
err,
oldmask,
ftmstatusx();

oldmask =sigblock(sigmask(SIGUSRI));

rc =ftmstatusx(pnum, sunstat, mirror);

err =errno;

sigsetmask (oldmask);
errno = err;
return (rc);

static mnt ftmstatusx~pnum, sunstat, mirror)

int pnum,
*sunstat,
*mirror;

int errx,
sunstatx,
mirrorx;

struct msgbuf *mptr,
*mptr2;

extern char intadvyet,
intmyname(MAXNAMELEN + 1);

extern int ftmsock,
intseqnum,
intpidme;

extern struct ftm time ftmtime;

if ((intadvyet != 'Y') 11 (intpidme != getpido))

printe("FTMSTATUS: ADV NOT YET COMPLETED SUCCESSFULLY\n");
errno = EFAULT;

return (-1);

if (ftmsock < 0)
errno = ENOTCONN;
return (-1);

if((pr=(tutmgu*)mlo(SSF-MN)=NUL
if ((mptr = (struct msgbuf * malocSGF NIN))) NULL))

perro(FMStATU =(tctMsgufImaio(SGUFMX) = UL)

iferror != NTAUL) ALO")
fr(mtr *) NULL);

errno = EFAULT;
return (-1);

bzero((char Imptr2, MSGBUF MAX);

strcpy(mptr->cmd, "STATUS");

mptr->from = 'I';

sprintf(mptr->status, "%d", -1);
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strcpy(rnptr->namc from, intmyname);
sprlntf(mptr->seqnum, 'Id", intseqnum);
+4intseqnum;
strcpy(mptr->errno, "0");
strcpy(rnptr->mlen, "0");

if (send msg(ftmsock, mptr->cmd, MSGBUtFMIN -ASGBUF HDR) < 0)
errx = errno;
perror("FTMSTATUS: SEND-MSG");

free((char ~)mptr);
free((char *)mptr2);
if (errx ==ENOTCONN)

errno ENOTCONN;
else

errno EFAULT;
return (-1);

#if IDEBUG
printf("DEBUG: FTMSTATUS: STATUS MESSAGE SENT TO LOCAL FTM %A"

ftmsock);

printf ("DEBUG: FTMSTATUS: NOW WAITING FOR STATOK\n");
#endit

SLOOP UNTIL THE STATOK MESSAGE IS RECEIVED

getmsgs(-4);

if (fjndbuf("STATOK", "">, rnptr2) < 0)

if (errno !=EWOULDBLOCK) (
prince ("FTMSTATUS: BAD RETURN FROM FINOBUF-I\n');
free((char ~)mptr);
frce((char '1mptr2);
errno = EFAULT;
return (-I);

else;
else if (strcmp(mptr2->name Tto, intmynane) != 0)

printe2("FTMSTATUS: NAME IN STATOK IS %Art", mptr2->name to);
free((char ~)mptr);
free((char *)mptr2);
errno = EFAULT;
return (-1);

else if (strcmp(mptr->seqnun, rptr2->seqnum) !=0)
printe3("FTMSTATUS: STATOK SEONUM MISMATCH %s %s\n",

mptr->seqnum, mptr2->seqnum);
free((char *)mptr);
free((char *)mptr2);
errno = EFAULT;
return (-I);

else

#if IDEBUG
printf("DEBUG: FTMSTATUS: STATOK MESSAGE RECEIVED\n");

#endif

sscanf(mptr2->msg, "%X %X", &sunstatx, &mirrorx);
if (pnum >= 1)

Isunstat = sunstatx;
if (pnum >= 2)
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*mirror =mirrorx;

free((char ~)mptr);
free((char ')mptr2);
return (0);

if (ftrnsock < 0)
tree((char *)mptr);
free((char Imptr2);
errno = ENOTCONN;
return (-I);

bcopy((char *) &ftmtime.readfdsperm, (char I&ftmtime.readfds temp,
sizeof(struct fd set));

bcopyC(char *) &ftmtiMe.timevalperm, (char I&ftmtime.timeval temp,
sizeof(struct timeval));

select (ftmtime.widthfds, &ftmtirne.readfds temp. NULL, NULL,
&ftmtime.timevaltemp);

ftmwhere.c

- Purpose -called by application program to request information about -

the current and backup physical machines for any program.

#include "header.h"

int ftmwhere(name, mach, bkup)
char *name,

*mach,
*bkup;

int rc,
err,
oldmask,
ftmwherex 0;

oldmask =sigblock Csigmask (SIGUSRi));
rc =ftmwherex(name, mach, bkup);
err =errno;

sigsetmask (oldmask);
errno = err;
return (rc);
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static int ftrnwherex(name, mach, bkup)
char *name,

*rnach,
*bkup;

char capnamneLMAXNAMELEN + 11;

struct msgbuf *mptr,
*mptr2;

int errx;

extern char intadvyet,
intmyname[MAXNAMELEN + 1);

extern int f tmsock,
intseqnum,
incpidme;

extern struct ftrn rime ftmtime;

if ((intadvyct != Y') 11 (intpidme I"getpido))
printe ("FTMWHERE: ADV NOT YET COMPLETED SUCCESSFULLY%n");
errno = EFAULT;
return (-l);

if (ftmsock < 0)
errno = ENOTCONN;
return (-I);

bzero(capname, sizeof(capname));
strlcpy(capname, name, sizeof(capname) - 1);
setcap(capname, sizeof(capnane) - 1);
if ((capname(O] =- OxOO) 11 (strcmp(capname, "') 0))

errno = EINVAL;
return (-I);

if (((mptr = (struct msgbuf *) malloc(MSGBUF MAX)) NULL)

11 ((mptr2 = (struct msgbuf )malloc(MSGBUFMAX)) ==NULL))

perror('FTMNHERE: MALLOC");
if (mptr != NULL)

free((char *) rnptr);
errno = EFAULT;

return (-I);

bzero((char )mptr, MSGBUF MAX);
bzero((char Imptr2, MSGBUF MAX);

strcpy(mptr->cmd, "WHERE");

mptr->from = III;
sprintf(mptr->status, "%d", -1);
strcpy(mptr->nane fromn, intmyname);
sprintf (mptr->seqnum, 'Ad", intseqnum);
++ intseqnum;
strcpy(mptr->errno, "0");

strcpy(mptr->'msg, capname);
sprintf(mptr->mlen, 'Id", strlen(mptr->msg)) ;
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if (send rnsg(ftmsock, mnptr->cmd,
MSGBUF WIN - MSGBUF HDR + :rtrlen(mptr->msg)) < 0)

errx =errno;

perror(*'FTMWHERE: SEND MSG");
free((char m rptr);
free((char Imptr2);

if (errx ENOTCONN)
errno =ENOTCONN;

else
errno EFAUT';

return (-1);

#if IDEBUG
printf("DEBUG: FTMWHERE: WHERE MESSAGE SENT TO LOCAL FTM =%dn", ftmsock);
printf("DEBUG: FTMWHERE: NOW WAITING FOR WHEROXfn");

#endif

*LOOP UNTIL THE WHEROK MESSAGE IS RECEIVED

LOOP
getrnsgs (-5);

if Cfitidbuf("WHEROK", "", mptr2) < 0)
if (errno !- EWOULDBLOCK)(

printe("FTMWHERE: BAD RETURN FROM FINDBUF-l\n");
free((char I ipir);
free((char Imprtr2);
errno = EFAULT;
return (-I);

else;
else if (strcmp(mptr2->name -to, intrnynarne) !- 0)

printe2("FTMWHERE: NAME IN WHEROK IS %s\n", rnptr2->name to);
free((char *)mptr);
free(Cchar I rptr2);
errno = EFAULT;

return (-1);
else if (strcmpt mptr->seqnum, mptr2->seqnum) != 0)

printe3("FTMWHERE: WHEROK SEONUM MISMATCH %s %s\n', mptr->seqnun,
rnptr2->seqnum);

free((char *)mptr);
free((char Imptr2);
errno = EFAULT;
return (-I);

else

#if IDEBUG
printf("DESUG: FTMWHERE: WHEROK MESSAGE RECEIVED\n");

4endif

strcpy(mach, mptr-2->msg);
strcpy(bkup, (mptr2->rnsg) + MAXHCSTNAMELEN ~-1);
free((char *)mptr);
free((char m)rprtr2);

return (0);

if (ftrnsock < 0)
errno = ENOTCONN;
return (-1);
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bcopy(Cchar *) &ftmtime.readfdsperm, (char *) ftmtime.readfdstenp,
slzeof(struct fd set)):

bcopy((char *) &ftmtime.timevalperm, (char *)&ftmtime.timeval temp.

sizeof~struct timeval));
select(ftmrtime.widthfds, &ftmtime.readfds temp, NULL, NULL,

&ftmtime.timevaltemp);

- getmsgs.c

- Purpose - routine to retrieve message(s) by the intercept code and -

-insert them into a linked list. This routine is sometimes -

-called synchronously and is sometimes called as an interrupt -

-handler.

#include "heaider.h"

void getmsgs(slg)
int Sig;

int len,
err;

char tempname(MAXNAMELEN + 1];

struct msgbuf *mptr2;

extern int ftmsock;

extern struct msgbuf 'msgfirst;

extern struct ftm time ftmtime;

err = errno;

if (ftmsock < 0)
errno = err;
return;

if ((mptr2 = (struct msgbuf *) malloc(MSGSUF MAX)) ==NULL)

perror("GETMSGS: MALLOC");
printe("GETMSGS: CRITICAL HANDLER ERROR - PROCESS ABORTED\n");

exit (-I);
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SLOOP UNTIL NO MORE MESSAGES TO RECEIVE

LOOP

if ((en -recvrnsg(ftrnsock, rnptr2->cnd, MSGBUF MAX - MSOBUF IOR)) < 0)
if (errno -- EWOULDBLOCK)

break;

else if (errno -- ENOTCONN)

#if IDEBUG
printf("DEBUG: GETMSGS: SOCKET CLOSED TO LOCAL FTM %dn"

ftrnsock);
#endif

free(Cchar *) mptr2);
FD CLR(ftmsock, & ftmtirne. readfds perm);
close (ftmsock);
ftrnsock = -2;
errno = err;
return;

else
perror("GETMSGS: RECV MSG");
printe("GETMSGS: CRITICAL HANDLER ERROR -PROCESS ABORTED\.n");
free((char *) Mptr2);
exit (-1);

#if IDEBUG
printf("DEBUG: GETMSGS: MSG FOUND =%s %c %s %s %s %s %s %S %s\n',

rnptr2->cmd,

rnpt r2->from,
rnptr2->'status,
mptr2->name to,
mptr2->nane from,
mpt r2->seqnum,
mptr2->errno,
mptr2->mlen,
mptr2->msg);

#endif

if (msgtolist(mptr2) <0)
printe("GETMSGS: BAD RE'j RN FROM MSGTOLIST]M');
printe("GETMSGS: CRITICAL HANDLER ERROR - PROCESS ABORTED\n")
free((char *) mptr2);
exit (-1);

if (strcrnp(mptr2->cnd, "TO") -= 0)
strcpy (mpt r2->cmd, "TOOK");

rptr2->from = III;
strcpy(tempniame, mptr2->name to);
strcpy (mptr2->name to, mptr2->name from);
strcpy(mptr2->name from, tempnarne);

41f lvtBUG~

printf("DEBUG: GETMSGS: ABOUT TO SEND A TOOK TO FTtMn");
#endif

if (send msg(ftmsock, mrptr2->cmd, len) < 0)
perror("GETMSGS: SEND-MSG");
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printe("GETMSGS: CRITICAL HANDLER ERROR - PROCESS ABORTED\n");
free((char *) mptr2);
exit(-l);

free((char *) mptr2);
errno = err;
return;

hndladvf.c

- Purpose - handler routine to operate on messages from other FTMs which
attempt to globally advertise a name.

#include "header.h"

int hndladvf(mptr, mptr2, delmptr)
struct msgbuf *mptr,

*mptr2;
char *deimptr;

/*

* handle ADV messages from FTM

-------------------------------------------------

int mptrlen,
mptrlen2,
i,

isock,
fsock,
pid,
bkupftm;

extern struct ftmtable *ftmptr;

extern int ftmsize;

*deImptr -'N';

sscanf(mptr->mlen, "%d", &mptrlen);
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mptrlen += MSGBUF MIN;

sscanf(rnptr->msg, "%d %d %d %d", &pid, &lsock, &bkupftm, &fsock);
bzero(mptr2->cmd, mptrlen - MSGi3UFHDR);
strcpy(MpLr2->cmd, "ADVOK");
mptr2->from = 'F';
sprintf(mptr2->status, %Id", -1);
strcpy(mptr2->name to, rnptr->name from);
strcpy (mptr2->seqnur., mptr->seqnum);
strcpy(mptr2->errno, "0");
sprintf(mptr2->msg, "%d %d %d", pid, Isock, bkupftm);
mptrler.2 = PSGBUFVIN + strlen(mptr2->msg);
sprintf(mptr2->mlen, 'Id", strlermptr2->nsg) );
if ((namtolist.(mptr->name from, Isock, frock, pid, bkupftm)) < 0)

if (errno == EVIOULDBLOCK)[
strcp-(mptr2->cmd, "ADVNO");
sprintf(mptr2-',errno, "W", EWOULDBLOCK);

else[
printe("HNDLADVF: BAD RETURN FROM NAMTOLISTIM);
return (-I);

#if FD)EBUG
print ("DEB3UG: iNDLADVF: ADVOK MSG TO SEND =%s %C %s %s %S %S %s %s %sVn",

mptr2->cmd,
Mptr2->from,
mptr2->status,
mptr2->name to,
mptr2->name from,
mptr2->seqnum,
mptr2->errno,
mptr2->mlen,
mptr2->msg);

4endif

if (send msg(fsock, mptr2->cmd, mptrlen2 -MSGBUF-HDR) < 0)
if (errno != ENOTCONN) (I

perror("HINDLADVF: SEND-MSG");
return(1)

Ielse'
for (i = 0; i < ftmsize; ++i)

if ((ftmp!-- + i)->sock -fsock)

(ftmpt. + i)->sock = -3 - fsock;
break;

*delmptr =YI

return ()
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hndladvi.c

Purpose - handler rouLine to operate on messages from connected
applications advertising their name.

#include "header.h"

int hndladvi(mptr, mptr2, delmptr)
struct msgbuf Imptr,

*mptr2;

char *delmptr;

Shandle ADV messages from INT

int 1,

mptrlen,
mptrlen2,
1 sock,
pid,
num,
tempi,
temp2,
temp3,
temp4,
temp5,
bkupftm;

struct namtable *nptr;

extern struct ftmtable *ftmptr;
extern mnt ftmsize;

extern struct ftm time ftmtime;

*delmptr = IN';

sscanf(mptr->mlen, "%d", &mptrlen);
-nptrlen += MSGBUF-MIN;

sscanf(mptr->msg, "%d %d %d", &pid, &lsock &bkupftm);
bcopy(mptr->cmd, mptr2->cmd, mptrlen - MSGBUF HOR);
mptrlen2 = mptrlen;

mptr2->from = 'F';
if ((namtolist(mptr->name from, Isock, -1, pid, bkupftm)) < 0)

'f ,c I n c. I. TTil ll ~'V
printe("HNDLADVI: BAD RETURN FROM NAMTOLIST~n");
return (-I);

Ielse(
templ - lsock;
if (namlookup ("", &templ, &temp2, &temp3, &temp4, &temp5, &nptr) < 0)
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printe("HNDLADVI: BAD RETURN FROM NAMLOOKUP\n");
return (-l);

else if (namfrmlist(nptr) < 0)
printe("HNDLADVI: BAD RETURN FROM NAMFRMLIST\,n");
return (-l);

strcpy(mptr2->cmd, 'ADVNO");
strcpy(mptr2->name to, mptr2->name from);
bzero (mptr2->name from, sizeof(mptr2->name from));
sprintf(mptr2->errno, 'Id", CWOULDBLOCK);
bzero(mptr2->msg, strlen(mptr2->msg) );
sprintf(mptr2->msg, "%d",, pid);
bzero (mptr2->mlen, sizeof(mptr2->mlen));
sprintf(mptr2->mlen, "Wd, strlen(mptr2->msg) );
mptrlen2 = MSGBUF MIN + strlen(mptr2->msg);

#if FDEBUG
printf

("DEBUG: HNDLADVI: ADVNO MESSAGE RETURNED TO LSOCK %~"
lsock);

printf("DEBUG: HNDLADVI: MSG SENT =%s %c %s %s %s %s %s %s %s\n",
mptr2->cmd,
mptr2->from,

mptr2->status,
mptr2->name to,
mpt r2->name -from,
mptr2->seqnum,
mptr2->errno,
mpt r2->mlen,
mptr2->msg);

#endif

if (send msg(lsock, mptr2->cmd, mptrlen2 - SGBUFIIDR) < 0)
perror('HNDLADVI: SEND MSG-l");
return (-1);

else(

close(lsock) ;
kill(pid, SIGUSRl);
FD -CLR(lsock, &ftmtime.readfdsperm);
*delmptr = II
return (1);

num =0;

for (i = 0; i < ftmsize; ++i)

if ((s = (ftmptr + i)->sock) >= 0)
if (send msg(s, mptr2->cmd, mptrlen2 -MSGBUFHDR) < 0)

if (errno != ENOTCONN) {
perror("HNDLADVI: SEND-MSG-2");
return (-l);

Ielse(
(ftmpt~r + i)->sock = -3 - s;

else
++num;

#if FDEBUG
printf

("DEBUG: HNDLADVI: ADV MESSAGE %d SENT TO FSOCK = f"
num, s);

printf("DEBUG: INDLADVI: MSG SENT = %s %c %s %s %s %s %s %s %s~n",
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mptr2->cmd,
mptr2->from,
mptr2->status,
mptr2->name to,
mpt r2->narne from,
mptr2->seqnum,
mptr2->errno,
mptr2->mlen,
mptr2->'msg);

#endif

if (numn= 0)
bzero(mptr2->cmd, sizeof(mptr2->cmd));
strcp~y(mptr2->cmd, "ADVOK");
mptr2->from = IF';

bzero(mptr2->status, sizeof(mptr2->status)) ;
sprintf(mptr2->status, "%d", -1);
strcpy (mptr2->name to, mptr2->name -from);
bzero(mptr2->name -from, sizeof(mptr2->name from));
if (msgtoiist(mptr2) < 0)(

printe("MSGHNDL: ADV(I) - BAD RETURN FROM MSGTOLIST\n");
return (-1);

num =1

bzero(mptr->status, sizeof(mptr->status));
spr.,ntf(mptr->status, 'Id", num);
return (num + 1);

- hndladvok.c

- Purpose -handler routine to operate on messages from other FTMs which

-reply in the positive or negative to an attempt to globally -

-advertise a name. This is the response to the first phase of -

-the 2-phase commit protocol used for name advertising. -

#include "header.h"

int hndladvok(mptr, mptr2, delmptr)
struct msgbuf *mptr,

*mpt r2;

char *delmptr;

-------------------------------------------------
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*handle ADVOK and ADVNO messages

int 1,

fsock,
1 sock,
pid,
msgs,
num,
status,
bkup fim,
errx;

struct namtable *nptr;

extern struct ftmtable *ftmptr;
extern int ftmsize;

extern struct ftm time ftmtimc;

'delmptr = IN';
num = 0;
if (findbuf("ADV", mptr->name to, mptr2) < 0)

*delrnptr =IV

return (1);

if (strcmp(mptr2->seqnum, mptr->seqnum) != 0)
printe3("HNDLADVOK: SEONUM MISMATCH %s %s\n", mptr->seanum,

mptr2->seqnum);
return (-I);

if (strcmp(mptr->cmd, "ADVNO") -= 0)
sprintf (rptr2->errno, "%d", EWOULDBLOCK);

sscanf(mptr2->status, "%d", 6status) ;

--status;
if (status > 0)

bzero(mptr2->status, sizeof(mptr2->status)) ;

sprintf(rnptr2->status, "W"', status);

*delrnptr =I$
if (msgtolist(mptr2) < 0)

printe("HNDLADVOK: BAD RETURN FROM MSGTOLIST-l\n");
return (-1);

else
return (1);

if (namlookup(rnptr2->name from, &lsock, &fsock, &pid, &bkupftm,

&msgs, &nptr) < 0) [

printe2("HNDLADVOK: BAD RETURN FROM NAMLOOKUP FOR NAME =sn"

mptr2->name from);
*delmptr=IV

return (-1);

if (fsock 1=-1)
printe2C"HNDLADVOK: FSOCK IS NOT ME =%d~n", fsock);
*delmptr = II
return(-)

strcpy(mptr2->cmd, mptr->cmd);
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sscanf (mpt r2->errno, 'Id", &errx) ;
if (errx ==OxOD)

nptr->status = II
else(

if (namfrmlistinptr) < 0)
printe("HNDLADVOK: BAD RETURN FROM NAMFRM'LIST-l\.n");
return (-1);

else
strcpy(mptr2->cmd, "ADVNO");

rnptr2->from = 'F';
sprintf(mptr2->status, "%d", -1);
strcpy(mptr2->nane to, mptr->name to);

bzero (mptr2->name -from, sizeof (mpt r2->name from));
bzero (mptr2->mlen, sizeof (mptr2->mlen));

sprintf(rr.ptr2->mlen, "%d", 0);
mptr2->msg(0I = OxOD;

#if FDEBUG
printf('DEBUG: HNDLADVOK: ABOUT TO SEND %s TO INT %dVn",

mptr->cmd, Isock);

printf ("DEBUG: HNDLADVOK: MSG SENT =%s %C %s %s %s %s %s %s %s".1",
mptr2->cmd,
mptr2->from,
mptr2->status,
mptr2->name to,

mptr2->name from,
mptr2->seqnum,
mptr2->errno,
rnpt r2->mlen,
rnptr2->msg) ;

#endif

if (send -msg(lsock, mptr2->cmd, MSGBUF-MIN -MSGBUF-HDR) < 0)

if (strcmp(rnptr2->cmd, "ADVOK"I -= 1)
strcpy(mptr2->cmd, "ADVNO");

if (namfrmlist(nptr) < 0) (
printe("HNDLADVOK: BAD RETURN FROM NAMFRMLIST-2\n");
return (-1);

++num;

if (strcrnp(rptr2->cmd, "ADVOK") == 0)

strcpy(mptr2->cmd, "ADVOKY");

else(
strcpy(mptr2->cmd, "ADVOKN");

close(Ilsock);

kill(pid, SIGUSRl);
FD-CLR (Isock, &ftmtime.readfds perm);

strcpy(mptr2->name from, mptr2->name to);
bzero(mptr2->name -to, sizeof(mptr2->name to));

for Ci = 0; i < ftmsize; ++i)

if ((ftmptr + i)->sock >= 0)
if (send msg((ftmptr + i)->sock, mptr2->cmd,

MSGBUFMIN - MSGBUFIDR) < 0)
if (errno !=ENOTCONN)(

printe("HNDLADVOK: BAD RETURN FROM SEND MSG-2\n");
return (-I);

else
(ftrnptr + i)->sock = -3 - (ftmptr + i)->sock;
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else
++num;

*delmptr = 'Y';
return (num + 1);

hndladvoky.c

Purpose - handler routine to implement the second phase of the 2-phase
commit protocol used to globally advertise names.

#include "header.h"

int hndladvoky(mpr, mptr2, de!mptr)
struct msgbuf *mptr,

*mptr2;
char *delmptr;

/*

---------------- M--------------------- ----------

* handle ADVOKY and ADVOKN messages

*- - - - ------------------------------

int fsock,
Isock,
pid,
msgs,
bkupftm;

struct namtable *nptr;

if (namlookup(mptr->name from, &fsock, &Isock, tpid, &bkupftm,
&msgs, &nptr) < 0) (

printe("HNDLADVOKY: BAD RETURN FROM NAMLOOKUP\n");
return (-1);

else if (strcmp(mptr->cmd, "ADVOKY") == 0)
nptr->status = 'Y';

else if (namfrmlist(mptr->name from) < 0)

printe("HNDLADVOKY: BAD RETURN FROM NAMFRMLIST\n");
return (-l);

*delmptr = 'Y';
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return (1);

hndlclose.c

Purpose - handler routine to operate on messages from connected

applications whicn attempt to delete an advertised name.

#include "header.h"

int hndlclose(mptr, mptr2)

struct msgbuf *mptr,
*mptr2;

/*
--------------------------------------------------

* handle CLOSE messages

-------------------------------------------------

int Isock,
fsock,
pid,
msgs,
bkupftm;

struct namtable *nptr;

extern struct ftm time ftmtime;

if (namlookup(mptr->namefrom, &lsock, &fsock, &pid, &bkupftm,
&msgs, &nptr) < 0)

return (0);

if (fsock != -1)
printe2("HNDLCLOSE: FSOCK CANNOT BE = %dn", fsock);
return (-I);

bzero(mptr2->cmd, MSGBUF MIN - MSGBUFHDR);

strcpy(mptr2->cmd, "CLOSOK");
mptr2->from = 'F';
strcpy(mptr2->status, "-I");
strcpy(mptr2->nameto, mpLr->namefrom);
strcpy(mptr2->seqnum, mptr->seqnum);
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strcpy(mptr2->errno, "0");
strcpy(mptr2->mlen, "0");

if ((send msg(Isock, mptr2->cmd, MSGBUFMIN - MSGBUFHDR)) < 0)
if (errno != ENOTCONN) (

perror("HNDLCLOSE: SENDMSG");

return (-I);

close(isock);

kill(pid, SIGUSR1);
FD CLR(Isock, &ftmtime.readfdsperm);
nptr->isock -2;
bzero((char ) ptr2, MSGBUF MIN - MSGBUFHDR);
strcpy(mptr2->cmd, "KILLN");
mptr2->from = 'i';
strcpy(mptr2->status, "-1");
strcpy(mptr2->name from, nptr->name);

strcpy(mptr2->seqnum, "0");
strcpy(mptr2->errno, "0");
sprintf(mptr2->msg, "%X', nptr);
sprintf(mptr2->mlen, "%d", strlen(mptr2->msg));

if (msgtolist(mptr2) < 0) (
printe("HNDLCLOSE: BAD RETURN FROM MSGTOLISTn");
errno = EFAULT;
return (-I);

return (3);

- hndlkilln.c

- Purpose - handler routine to operate on messages which indicate that a

program has died and its advertised name should be deleted.

The program is then considered for restart/relocation.

#include "header.h"

int hndlkilln(mptr, mptr2)

struct msgbuf *mptr,
*mptr2;

i'
-------------------------------------------------

* handle KILLN messages

-- - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - -
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int.
err,
num,
temp 1,
f sock,
temp3,
bkupftm =-1,

temp5;

char name(MAXNAMELEN + 1],
bkup(MAXPATHLEN + 1],
buf(MAXNAMELEN + MAXHOSTNAMELEN + MAXPATHLEN + 3),
*bufpath,
f romn,
msgtake;

FILE *bkfile;

struct namtable *nptr;

struct msgbuf *mptrtemp;

extern struct msgbuf *msgfirst;

extern struct namtable *namfirst;

extern struct ftrntable *ftmptr;

extern int ftmsize,
ftmme;

num = 0;
sscanf(mptr->errno, 'Ad", &err);
strcpy(name, mptr->name from);
from =mptr->from;
nptr = NULL;

if (namefO] == Ox0O)(
if (rptr->from == ''

sscanf(mptr->msg, "%X", &n-tr);
else(

printe("HNDLKILLN: MSG FOUND WITH NULL NAME AND FROM !=I\n")

errno = EFAULT;
return (-I);

Ielse
namlookup(name, &templ, Sfsock, &temp3, &bkupftm, &temp5, &nptr);

if (nptr != NULL)

if (namfrmlist(nptr) < 0)
prizite("HNDLKILLN: BAD RETURN FROM NAMFRMLIST\n");
return (-1);

mptr = msgfirst;
while (mptr NULL)

mptrtemp =mptr->next;
if (strcmp(rnptr->cmd, "ADV') ==0)

rnsgtake I N';
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else if (strcmrp(mptr->cmd, "TO") == 0)
if (strcmp(mptr->namc from, name) == 0)

msgtake = II
else if (strcmp(mnptr->name to. name) ==0)

sprintf(mptr->status, "Wd", -1);
msgtake = IN';

Ielse
msgtake = IN';

else if (strcmp(mptr->cnd, "TOOK") ==0)

if (strcmp(mptr->name..to, name) ==0)

msgtake = II
else

msgtake = 'N';
else if ((strcmp(mptr->ndme to, name) =0

II(strcmp(mptr->name from, name) 0))
msgtake = II

else
msgtake = IN';

if (msgtake -= 'Y')
if (msgfrmlist(mptr) < 0)

printe("IiNDLKILLN: BAD RETURN FROM MSGFRMLIST\n");
return (-l);

else
++num;

mptr = mptrtemp;

if ((rom == 111) &6 %(err == 0) 11 (err s 1)
bzero(mptr2->cmd, MSGBUFMIN - MSGBUF HOR);
strcpy(mptr2->cmd, "KILLN"),
mptr2->from = F';
strcpy(mptr2->status, "-1");

strcpy(mptr2->name from, name);
strcpy(mrptr2->seqnum-, "0");
sprintf(mptr2->errno, "%d", err);
strcpy(mptr2->mlen,..0..);
for (i = 0; 1 < ftmsize; ++1)

if (((ftmptr + i)->sock >= 0) &&((ftmptr + i)->sock 1=fsock))
if (send mso

((ftmptr -ti)->sock, mptr2->cmd, MSGBUF-MIN - MSGBUF)1DR) < 0)
if (errno 1=ENOTCONN)(

perror("!INDLKILLN: SEND MSG-l");
return (-1);

else(
(ftmptr + i)->sock =-3 - (ftmptr + i)->sock;

else
++num;

if (err ==0)

return (num);

if (bkupftm !=ftmme)
return (num);

#if FDEBUG
printfl,"DERU'C: HLIN:A TEMPI1I.1W TO RESTART NAME - "~ )

#endif

bzero (bkup, sizeof (bkup));
strcpy (bkup, FTMPATH);
strcat (bkup, BKUPFILE);
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if C(bkfile = fopen(bkup, "r")) -- NULL)
printe CFTM: liNDLKILLN: NO BACKUP FILE FOUND\n");
return (0);

bzero (buf, sizeof (buf));

while (fgets(buf, sizeof(buf), bkfile) != NULL)
buf(sizeof(buf) - 1) = OxOD;

nline(buf, sizeof(buf));
for (bufpath - but; bufpath(O] !- OxOD && bufpath(0J ! TAB; ++bufpath);

if (bufpath(O] -= OxOD) ( I' NO TAB =-> COMMENT CARD ~
bzero(buf, sizeof(buf));
continue;

bufpath[0] OxOO;
setcap(buf, strlen(buf));

#if FOEBUG
printf("DEBUG: HNDLKILLN: ADV NAME = %s FILE LINE NAME = %s\n" name, bu

f) ;
#endif

if (strcmp(buf, name) !- 0) ( I DIFFERENT ADVERTISED NAME *

bzero(buf, sizeof(buf));
continue;

++bufpath;
while (bufpath[D] TAB)

++bufpath;

#if FDEBUG
printf("DEBUG: HNDLKILLN: RESTART NAME MATCH FOUND,/n PATH %sn"

bufpath);
#endif

bzero(mptr2->cmd, MSGBUFMIN - MSGBUF HDR);
strcpy(mptr2->cmd, "KILLN");
mptr2->from = IF';
strcpy(mptr2-.>status, "-1");
strcpy(mptr2->name from, name);
strcpy(mptr2->seqnum, "0"';
sprintf(mptr2->errno, "%d", err);
strcpy(mptr2->nlen, "0");
for (i = 0; i < ftmsize; ++i)

if (((ftmptr + i)->sock >= 0) && ((ftmptr + i)->sock fsock))

if (send msg
((ftmptr + i)->sock, mptr2->cmd, MSGBUF-MIN - MSGBUF-HDR) < 0)

if (errno != ENOTCONN)(
perror("HNDLKILLN: SEND MSG-2');
return (-1);

else(

(ftmptr i)-)sock = -3 - (ftmptr + i)->sock;

else
++num;

perror("FTM: HNDLKILLN: FORK");
printe(*FTM: HNDLKILLN: COULD NOT FORK A PROCESS RESTART'n");

break;
else if (i > 0)
break;
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else
++num;
execve(bufpath, 0, 0);
perror("FTM CHILD: HNDLKILLN: EXECVE");
printe2("FTM CHILD: HNDLKILLN: COULD NOT RESTART PROCESS %An",

bufpath);
exit(-1);

fclose(bkfile);

return (num);

hndlstatus.c

Purpose - handler routine to operate on messages from applications which
request global status.

#include "header.h"

int hndlstatus(mptr, mptr2)
struct msgbuf *mptr,

*mptr2;

/*
-------------------------------------------------

' handle STATUS messages

--------------------------------------------------------------------

int i
sunstat,
mirror,
Isock,
fsock,
pid,
msgs,
bkupftm;

char mach[MAXHOSTNAMELEN + 1];

struct namtable *nptr;

extern struct ftmtable *ftmptr;
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extern int ftmrize;

/*

sunstat: BIT 0 => auvsunO

BIT 1 => auvcl
BIT 2 => auvc2
BIT 3 => auvc3
BIT 4 => auvc4
BIT 5 => auvc5
BIT 6 => auvc6

BIT 7 => auvc7
BIT 8 -> auvc8
BIT 9 => auvc9
BIT 10 => auvcl0
BIT 11 => atvcll
BIT 12 -> auvcl2

BIT 13 => auvcl3
BIT 14 => auvcl4
BIT 15 => auvcl5
BIT 16 -> auvcl6
BIT 17 => auvsunl

mirror 0 => DRIVE 0 DOWN M MEANINGLESS UNTIL DISK MIRRORING INSTALLED
: -> DRIVE 1 DOWN

- 2 => BOTH DRIVES UP
-/

mirror = 2;

sunstat = 0;
for (i u 0; i < ftmsize; +i)

if ((ftmptr + i)->sock < -1)
continue;

strcpy(mach, (ftmptr 4 i)->mach);

if (strcmp(mach, "auvsun0") -- 0)

sunstat I= (I <C 0);
else if (strcmp(mach, "auvcl") == 0)

sunstat 1= (1 << 1);

else if (strcmp(mach, "auvc2") = 0)

sunstat 1= (I << 2);

else if (strcmp(mach, "auvc3") == 0)
sunstat I= (1 << 3);

else if (strcmp(mach, "auvc4") 0)

sunstat 1= (I << 4);
else if (strcmp(mach, "auvc5") == 0)

sunstat = ( << 5);

else if (strcmp(mach, "auvc6) == 0)
sunstat I= (I << 6);

else if (strcmp(mach, "auvc7") == 0)
sunstat I= (I << 7) ;

else if (strcmp(mach, "auvc8") = 0)
sunstat I= (I << 8);

else if (strcmp(mach, "auvc9") -= 0)

sunstat 1= (I << 9);
else if (strcmp(mach, "auvcl0") == 0)

sunstat i= (I << 10);
else if (strcmp(mach, "auvcll") == 0)

sunstat 1= (1 << 11);

else if (strcmp(mach, "auvcl2") == 0)

sunstat I= (I << 12);
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else if (strcmp(mach, "auvcl3") -0)

sunstat I- (I << 13):
else if (strcmp(mach, "auvcl4) ==0)

sunstat 1= (I << 14);
else if (strcmp(mach, "auvcl5') ==0)

sunstat 1=(I << 15);

else if (strcmp(mach, "auvclV) ==0)

sunstat I-~ (I << 16);
else if (strcmp(mach, 11auvsun2"') =0)

sunstat 1= (I << 17);

bzero(mptr2->cmd, MSGBIJFMIN - MSGB!JF NOR);
strcpy(rnptr2->cmd, "STATOK");
mptr2->from = IF';
strcpy(mptr2->status, "-1'):
strcpy(mptr2->nane to, mptr->nane from);
strcpy(mptr2->seqnum, mptr->seqnum);
strcpy(mptr2->errno, "0");
sprintf(mptr2->msg, "%X %X", ;unstat, mirror);
sprintf(mptr2->mlen, "%d", strlcn(mptr2->msg) );

if ((namlookup(mptr2->name to, &lsock, &fsock, &pid, &bkupftm, &msgs,

&nptr) < 0) 11 (fsock !=-1) 11 (isock < 0))
return (0); 1* THE APPLICATION HAS GONE AWAY ~

else if ((send msg(lsock,
mptr2->cmd, MSGBUFMIN - MSGBUFHDR + strien (mptr2->msg))) < 0)

if (errno != ENOTCONN)(
perror("HNDLSTATUS: SEND-MSG");
return (-1);

return (2);

- hndlto.c

- Purpose - handler routine to operate on messages which are to be sent -

- to another FTM or directly to an application.

#include "header.h'

struct msgbuf *mptr,
*mpt r2;

char *delmptr;

-------------------------------------------------
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*handle TO messages

-------------------------------------------------

int 5,

mptrlen,
Isock,
f sock,
pid,
rnsgs,
num,
bkupftm;

char ftmloc;

struct namtable *nptr;

extern struct ftmtable *ftmptr;

extern int ftmsize;

*delmptr = IN';

sscanf(mptr->mlen, "W"', &mptrlen);
mptrlen += MSGBUF MIN;
num = 0;

if ((namlookup(mptr->name to, &lsock, &fsock, &pid, &bkupftm, &msgs,
&nptr) < 0)

I(nptr->status == IN') II((fsock == -1) && (Isock < 0)))
bzero(mptr2->cmd, rnptrlen -MSGBUF-MIN);

strcpy Cmptr2->cmd, "TONO");
mptr2->from = IF';
.trcpy(mptr2->status, mptr->status);

strcpy(mptr2->name to, mptr->name from);
strcpy(rnptr2->name from, mptr->name -to);

strcpy(mptr2->seqnum, mptr->seqnum);
sprintf~mptr2->errno, "Wd", EWOULDBLOCK);

strcpy(mptr2->mlen, mptr->mlen);
bcopy(mptr->msg, mptr2->msg, rnptrlen - MSGBUFMIN + 1);
if (namlookup(mptr->name from, &lsock, &fsock, &pid, &bkupftm,

&msgs, &nptr) < 0)

*delmptr = II
return (0);

if Cfsock == -1)
s = Isock;
ftMloC = II

else if (fsock >= 0)
s = fsock;

ftmloc = 'F';

Ielse(
printe3("HNDLTO: LOGIC ERROR TO~i), FSOCK =%d FOR NAME %s\n",

fsock, mptr->name from);
return (-1);

if (s >= 0)
if (send msg(s, mptr2->cmd, mptrlen - MSGBUFHDR) < 0)
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if (errno !- ENOTCONN)
perror("HNDLTO: SENDMSG-l");
printe2 (HNDLTO: ATTEMPT TO SEND TO SOCKET -%d\n", s);
errno = EFAULT;
return (-1);

else if (ftmloc == IF')
for (i = 0; 1 < ftmsize; ++i)

if C(ftmptr + i)->sock -s)
(ftmptr + i)->sock =-3 - s;
break;

*delrnptr = II
return (1);

Ielse

#if FDEBUG
printf ("DEBUG: HNDLTO: TONO M4ESSAGE SENT TO SOCK %d\n", s);
printf("DEBUG: HNDLTO: MSG SENT =%s %c %s %s %s %s %s %s %s\n",

mptr2->cmd,
irptr2->from,
rnptr2->status,
mptr2->name to,
mpt r2->name from,
mpt r2->seqnum,
mptr2->errno,
mptr2->mlen,
mptr2->msg);

#endif

*delmptr II

Ielse if (Csock == -1) II Csock >- 0))
if (fsock =- -1)

s = lsock;
ftmloc = ILI ;

else(
s = fsock;
ftmloc = 'F';

bzero(rnptr2->cmd, rnptrlen - MSGBUF HDR);
strcpy (rptr2->cmd, "TO");
mptr2->from = IF';
sprintf(mptr2->status, 'Id", -1);
strcpy (mptr2->nane to, rptr-name to);
strcpy (mptr2->nane from, mptr->name from);
strcpy(mptr2->seqnum, mptr->seqnum);
sprintf(mptr2->errno, "%d", 0);
strcpy(mptr2->mlen, mptr->mlen);
bcopy(mptr->.msg, mptr2->msg, mptrlen -MSGBUFMIN + 1);

if (send msg(s, rptr2->cmd, mptrlen -MSGBUFHDR) < 0)
if (errno !=ENOTCONN)

perror("HNDLTO: SEND MSG-2');
printe2("HNDLTO: ATTEMPT TO SEND TO SOCKET =%d\n", s);
errno = EFAULT;

return (-I);
Ielse if (ftmloc I= F')

for (i = 0; i < ftmsize; ++i)
if ((ftmptr + i)->sock == S)

(ftmptr + i)->sock = -3 - s

break;
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*delmptr = 'Y';

return (1);
else

#if FDEBUG
printf("DEBUG: HNDLTO: TO MESSAGE SENT TO SOCK = %d\n", s);
printf("DEBUG: HNDLTO: MSG SENT = %s %c %s %s %s %s %s %s %sn",

mptr2->cmd,
mptr2->from,
mptr2->status,
mptr2->name_to,
mptr2->namefrom,
mptr2->seqnum,

mptr2->errno,
mptr2->mlen,

mptr2->msg);
#endif

bzero(mptr->status, sizeof(mptr->status));
sprintf(mptr->status, "%d", 1);
++num;

I else
printe3("HNDLTO: LOGIC ERROR TO(2), FSOCK = %d FOR NAME %s\n",

fsock, mptr->nameto);

return (-1);

return (num + 1);

hndltook.c

Purpose - handler routine to operate on messages from the receiver of a
previous message, indicating (un)successful receipt.

-****w*****=***************t***WWWwWWw***=*** ********WWW **W* W

#include "header.h"

int hndltook(mptr, mptr2, delmptr)

struct msgbuf *mptr,
*mptr2;

char *delmptr;

*
* handle TOOK and TONO messages
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1,
mptrlen,
Isock,
f sock,
pid,
msgs,
num,
status,
bkupftm;

char ftmloc;

struct nartable *nptr;

extern struct ftmtable *ftmptr;

extern int ftmsize;

*delmptr = I';

sscanf(rnptr->mlen, 'Id", &rnptrlen);
rnptrlen += MSGBUF MIN;
num = 0;
if ((namlookup(mptr->name to, &lsock, &fsock, &pid, &bkupftn,

&msgs, &nptr) < 0) 11 ((fsock -- 1) && (Isock < 0)))
*delmptr = II
return (0);

else if (findbuf("TO", mptr->narne to, rnptr2) < 0)
printe ("HNDLTOOK: CANNOT FIND A TO MESSAGEW");
return (-1);

else if (strcznp(rptr->seqnum, rptr2->seqnum) != 0)
printe3("HNDLTOOK: SEONUM MISMATCH %s %s\n', mptr2->seqnum,

mptr->seqnum);
return (-1);

Ielse if (strcmp(rptr->mlen, rptr2->mlen) != 0)
printe3("HNDLTOOK: MESSAGE LENGTH MISMATCH %s %s~n", mptr2->mlen,

mptr->mlen);
return (-I);

else if (bcrp(mptr->msg, mptr2->msg, mptrlen - MSGBUF -MIN) !0)

printeC("HNDLTOOK: MESSAGE GARBLED DURING TRANSMISSION:\n");
rsgdump('MPTR', mptr);
msgdurnp("MPTR2', mptr2);
return (-1);

else(
sscanf(mptr2->status, 'Id", &status);
--status;
if (status > 0)

bzero(mptr2->status, sizeof(mnptr2->status)) ;
sprintf(mptr2->status, "%d", status);
if (nsgtolist(mptr2) < 0)(

printe ("HNDLTOOK: BAD RETURN FROM MSGTOLISTn");
return (-l);

else(
*delmptr -= I
return (num + 1);
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else
++num;

if (fsock -= -1)

s = Isock;
ftmloc -=LI

else(
s - fsock;
ftmloc = F';

bzero(mptr2->cmd, mptrlen - MSGBUFHDR);
strcpy(mptr2->cmd, "TOOK");
mptr2->from -'F';
sprintf(mptr2->status, 'Ad", -1);
strcpy(mptr2->name to, rnptr->name to);
strcpy(mptr2->name from, mptr->name from);
strcpy(mptr2->seqnum, mptr->seqnum);
sprintf(mptr2->errno, "%d", 0);
sprintf(rnptr2->mlen, 'Id", mptrlen - MSGBUF MIN);
bcopy(mptr->msg, mptr2->msg, mptrlen -MSGBUF HDR);
if (send -msg(s, mptr2->cmd, mptrlen -MSGBUFHDR) < 0)

if (errno != ENOTCONN)(

perror("HNDLTOOK: SEND MSG-l");
printe2("HNDLTOOK: ATTEMPT TO SEND TO SOCKET =%cf\n", s);
errno = EFAULT;
return (-1);

else if (ftmloc == 'F')
for (U = 0; i < ftmsize; ++i)

if ((ftrrptr + i)->sock == s)
(ftmptr + i)->sock = -3 - s;
break;

*delmptr -=YI
return (1);

else

#if FDEBUG
printfC"DEBUG: HNDLTOOK: MESSAGE SENT TO SOCK =%d~n", s);
printfC("DEBUG: HNDLTOOK: MSG SENT =%s %c %s %s %s %s %s %s %s\n",

mptr2->cmd,
mptr2->f rom,
mptr2->status,
mptr2->name to,
mptr2->name from,
mptr2->seqnum,
mptr2->errno,
mptr2->mlen,
mptr2->msg);

#endif

*delmptr =YI

return (num + 1);
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hndlwhere.c

Purpose - handler routine to operate on messages which inquire about the -

current and backup systems of any currently executing

application.

#inc]ude "header.h"

int hndlwhere(mptr, mptr2)
struct msgbuf *mptr,

*mptr2;

-------------------------------------------------
/*

* handle WHERE messages

-------------------------------------------------

*/

int i,
!sock,
fsock,
pid,
msgs,
bkupftm;

char mach(MAXHOSTNAMELEN + 1],
bkup[MAXHOSTNAMELEN + 1);

struct namtable *nptr;

extern struct ftmtable *ftmptr,

extern int ftmsize,
ftmme;

mach(O] = OxOO;
bkup(O) = OxOO;
if ((namlookup(mptr->msg, &isock, &fsock, &pid, &bkupftm,

&msgs, &nptr) >= 0) && (nptr->status == ))
if (fsock == -1)

if (Isock >= 0)
strcpy(mach, (ftmptr + ftmme)->mach);

else;
else

for (i = 0; i < ftmsize; ++i)
if ((ftmptr + i)->sock == fsock)

strcpy(mach, (ftmptr + i)->mach);
break;

strcpy(bkup, (ftmptr + bkupftm)->mach);

bzero(mptr2->cmd, MSGBUF MIN - MSGBUFHDR);
strcpy(mptr2->cmd, "WHEROK");
mptr2->from = 'F';
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strcpy(mptr2->status, "-1");
strcpy(mptr2->name to, mptr->namefron);
strcpy(mptr2->seqnum, mptr->seqnum);
strcpy(mptr2->errno, "0");
bcopy(mach, mptr2->msg, MAXHOSTNAMELEN + 1);
bcopy(bkup, (rptr2->msg) + MAXHOSTNAMELEN + 1, MA)XHOSTNAMELEN + 1);
sprintf(mptr2->mlen, "%d", 2 *(MAXHOSTNAMELEN + 1));

if ((namlookup~mptr2->name to, &lsock, &fsock, &pid, &bkupftm,
&msgs, &nptr) < 0) 11 (fsock !- -1) 11 (Isock < 0))

return (1); /* THE APPLICATION WENT AWAY ~
else if ((send rnsg(lsock,

mpt r2->cmd,
MSGBUF WIN - MSGBIJF HDR + 2 (MAXHOSTNAMELEN + 1)))

< 0)
if (errno !=ENOTCONN)

perror('HNDLWHERE: SEND-MSG");
return (-1);

return (2);

ifget.c

- Purpose -called by the FTM to gather pending messages from locally .

connected applications.

#include "header.h"

int ifget()

int S,
pid,
thispass,
al ipasses;

struct msgbuf *mptr2;

struct namtable *nptr;

extern struct namtable *namfirst;

extern struct ftm time ftmtime,

if (Cmptr2 ~- (struct msgbuf *) malloc(MSGBUF MAX)) ==NULL)

perror("IFGET: MALLOC");
errno = EFAULT;
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return (-1);

alipasses -0;
LOOP(

thispass . 0;
nptr - namfirst;
for (nptr - narnfirst; nptr 1=NULL; nptr =nptr->next)

if (nptr->fsock !- -1)
continue;

if (nptr->lsock < 0)
continue;

s =nptr->lsock;
if (recvmsg(s, mptr2->cmd, MSGBUF MAX - MSGBUF-HDR) < 0)

if (errno -- EWOULDBLOCK)
continue;

else~ if (errno -- ENOTCONN)

#if FDEBUG
printfC"DEBUG: IFGET: SOCKET CLOSED =%d NAME =sn"

s, nptr->nao) ;
#endif

close (s);
FDCLR~s, &ftmtinme.readfdsperm);
nptr->lsock -2;
nptr->status =RI

bzero((char ~)mptr2, MSGBUFNMIN - MSGBUFHDR);
strcpy(mptr2->cmd, "KILLN");
rnptr2->from = III;
strcpy(mptr2->status, "-1");
strcpy(rnptr2->name from, nptr->nanc);
strcpy(mptr2->seqnum, "0");
sprintf(mptr2->errno, 'Id", -1);
sprintf(mptr2->msg, "WX', nptr) ;
sprintf(mprtr2->mlen, "W", strlen(mptr2->msg) );

else
perror("IFGET: RECV MSG");
free((char *) mptr2);
errno - EFAULT;
retu2rn (-I);

#if FDEBUG
printf("DEBUG: IFGET: MSG FOUND =%s %c %s %s %s %s %s %s %s\n",

rnptr2->cmd,
mptr2->from,

mptr2->status,
mptr2->name to,
mptr2->namefrorn,
mptr2->seqnum,
mptr2->errno,
mptr2->rnlen,
mptr2->msg);

#endif

if (strcrnp~mptr2->cmd, "ADV') ==0)

sscanf(mptr2->msg, "Wd", &pid);
sprintf(mptr2->msg, "%d %d %d", pid, s, pick bkupofl;
sprintf(mptr2->nlen, "%d", strlen(mptr2->msg));

if (rsgtolist(mptr2) < 0)
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printe("IFGET: BAD RETURN FROM MSGTOLISI\'n");
free((char *) mptr2);
errno - EFAULT;
return (-1);

++thispass;

alipasses +- thispass:
-*---ONLY ALLOW ONE MESSAGE PER SOCKET PER FTM MAIN LOOP PASS---

if (thispass -- 0)

break;

free((char *) mptr2);

return (alipasses);

msgdump.c

Purpose - formats a dump of a message which includes a HEX dump of the
MSG part to compare for garbled transmissions.

#include "header.h"

void msgdump(string, mptr)
char *string;
struct msgbuf Imptr;

k,
numbytes:

char line(81];

printe2("MSGDUMP: %s\n", string);
printe9("MSGDJMP: HEADER = %s %c %s %s %s %s %s %An",

mptr->cmd, mptr->from, mptr->status, mptr->name to,
nptr-)name from, mptr->seqnum, mptr->errno, mptr->mlen);

printe2("MSGDUMP: MSG = %sVn", mptr->msg);
printe("MSGDUMP: MESSAGE IN HEX FOLLOWS:\n");

sscanf(mptr->mlen, "W", &numbytes);
i = 0;
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k = 0;
bzero(line, 81);

while (i < numbytes)
j - (int) mptr->msg[i];
sprintf(line + k, "%02X", j);
++%;

k +- 2;

if (k -- 78)
printc2("%skn", line);
bzero(line, 80);

k - 0;

if (k !- 0)
printe2("%s\n", line);

printe "\n");

return;

msgfrmlist.c

- Purpose - deletes a given message buffer from the current message list.

#include "header.h"

int msgfrmlist (mptr)
struct msgbuf *mptr;

struct msgbuf *mptr2;

extern struct msgbuf *msgfirst,
*msglast;

for (mptr2 = msgfirst; mptr2 != NULL; mptr2 = mptr2->next)
if (mptr2 == mptr)

break;

if (mptr2 == NULL)

printe("MSGFRMLIST: BUFFER TO DELETE NOT ON LIST\n");
return (-l);

if (msgfirst == msglast) /* ONLY MSG ON QUEUE */
msgfirst = NULL;
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msglast -NULL;
else if (mptr -- msgfirst) ( M HEAD OF QUEUE *
msgfirst - msgfirst->next;
msgfirst->prev - NULL;

Ielse if (mptr -- msglast) (/* TAIL OF QUEUE
msglast = mptr->prev;
msglast->next -NULL;

else (/* MIDDLE OF QUEUE
mptr->prev->next -mptr->next;

rptr->next->prev -mptr->prev;

free((char *) mptr);

return (0);

msghndl.c

Purpose - steps through the entire linked list of pending FTM messages. -

-Ignores or modifies messages, or calls hndlXXXXX ()routines -

-as appropriate.

#include 'header.h"

int msghndl()

int num,
totnum,
status;

char delmptr;

, truct msgbuf *mptr,
*mptr2,

*mptrtemp;

extern struct msgbuf *msgfirst;

if ((mptr2 = (struct msgbuf *) malloc(MSGBUF MAX)) ==NULL)

perror("MSGHNDL: MALLOC");
return (-l);

totnum - 0;
mptr -msgfirst;
while (mptr !- NULL)

sscanf(mptr->status, "Wd", &status) ;
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if (status -= 0)
printe ("MSGHNDL: MSG FOUND WITH STATUS - \"
printe9

("MSGHNDL: FULL MESSAGE IN ERROR = %s %c %s %s %s %s %s %s %s~n",
rnptr->cmd, mptr->from, mptr->status, mptr->nane to,
mptr->name from, mptr->seqnun, mptr->errno, mptr->mlen);

return (-1);

if (status > 0)

mptr = mptr->next;
continue;

if ((strcmp(mptr->cmd, "ADV") -- 0) && (mptr->from I= F'))
if ((num - hndladvf(mptr, mptr2, &delmptr)) < 0)

printeC"MSGHNDL: BAD RETURN FROM HNDLADV:\n");
free((char *) mptr2);
return (-I);

Ielse
totnum +- nurn:

else if ((strcmp(mptr->cmd, "ADV") -- 0) && (mptr->from - I)
if ((num -hndladvi(nptr, rnptr2, &delrnptr)) < 0)

printe("MSGHNDL: BAD RETURN FROM HNDLADVI\n');
free((char *) rnptr2);
return (-1);

else
totnum +- num;

else if ((strcmp(mptr->cmd, "ADVOK") -= 0) I
(strcmp(mptr->cmd, "ADVNO') -= 0))

if ((num -hndladvok(mptr, mptr2, &delmptr)) < 0)
printe("MSGHNDL: BAD RETURN FROM INDLADVOK\n");
free(cehar *) mp~r2);
return (-1);

else
totnurn += num;

else if ((strcrnp(mptr->cmd, "ADVOKY") ==0) I
(strcmp(mptr->cmd, "ADVOKN") =~0))

if ((num - hndladvoky(mptr, mptr2, &delmptr)) < 0)
printe("MSGHNDL: BAD RETURN FROM HNDLADVOKY\n");
free((char *) mptr2);
return (-I);

Ielse
totnum += num;

Ielse if (strcmp(mptr->cma, "CLOSE") -= 0)
if ((num -hndlclose(mptr, mptr2)) < 0)

printe("MSGHNDL: BAD RETURN FROM HNDLCLOSE\n");
free((char *) mptr2);
return(-;

else(
totnum += num;
delmptr = 'Y';

Ielse if (strcmp(mptr->cnd, "KILLM") == 0)
if ((num = hndlkilln(mptr, rnptr2)) < 0)

printe("MSGHNDL: BAD RETURN FROM HNDLKILLtN~");
free((char *) rnptr2);
return (-I);

Ielse
totnum += num;
mptr = msgfirst;
delrnptr = 'N';

Ielse if (strcmp(mptr->cmd, "STATUS") == 0)
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if ((num =hndlstatus(mptr, mptr2)) < 0)
printe("'MSGHNDL: BAD RETURN FROM HNDLSTATUS\n");
free((char *) mptr2);
return (-1);

else(
totnurn*m num;
delmptr YI

else if (strcrnp(mptr->cmd, "TO") == 0)

if ((num = hndlto(mptr, mptr2, &delmptr)) < 0)
printe ("MSGHNDL: BAD RETURN FROM HNDLTOWn');
free((char *) mptr2);
return (-I);

else
totnum += num;

else if ((strcmp(mptr->cmd, "TOOK") ==0) I
(strcmp~mptr->cmd, "TONO") ==0))

if ((num = hndltook(mptr, mptr2, &delmptr)) < 0)
printe("MSGIINDL: BAD RETURN FROM HNDLTOOK\n');
free((char *) rnptr2);
return (-1);

else
totnurn += num;

else if (strcmp(mptr->cmd, "WHERE") == 0)
if ((num -hndlwhere(mptr, rnptr2)) < 0)

printe("MSGHNDL: BAD RETURN FROM HNDLWllERE\n");

free((char *) rptr2);
return (-l);

Ielse(
totnurn += num;
delmptr = II

else
printe9

("MSGHNDL: UNKNOWN ACTION MESSAGE = %s %c %s %s %s %s %s %s %s\.n",
rnptr->crnd, rptr->from, mptr->status, mptr->nane to,
rptr->name from, mptr->seqnum, mptr->errno, mptr->mlen);

printe("MSGHNDL: ABOVE MESSAGE WILL BE DELETED\n");
delrnptr = II
++totnum;

if (mptr != NULL)
mptrtemp = mptr;
mptr = mptr->next;
if (delmptr =- 'Y')

if (msgfrrnlist~rnptrtemp) < 0)

printe("MSGHNDL: BAD RETURN FROM MSGFRMLIST\n");
return (-l);

free((char *) rptr2);
return (totnum);
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- msgtolist.c

- Purpose - inserts a message into the linked message list.

#include "header.h"

int msgtolist(mybuf)
struct msgbuf *mybuf;

int msglen;

struct msgbuf *mptrl;

extern struct msgbuf *msgfirst,
*msglast;

sscanf(mybuf->mlen, "%d", &msglen);
msglen += MSGBUF NIN;

if ((mptrl = (struct msgbuf *) malloc(msglen)) ==NULL)

perror ('MSGTOLIST: NALLOC");

printe2("NSGTOLIST: MSGLEN =%&n", msglen);
return (-1);

bcopy((char *)mybuf, (char )mptrl, msglen);
mptrl->next =NULL;

mptrl->prev =NULL;

if (msglast ==NULL)

msgfirst =mptrl;

msglast =mptrl;

else
msqlast->next = mptrl;

mptrl->prev = msglast;
msglast = rnptrl;

return (0);
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- namfrmlist.c

- Purpose - removes an advertised name from th'- lucal list of global-
advertised names.

#include "header.h"

int namf rml ist (npt r)
struct namtable *nptr;

struct namtable *nptr2;

extern struct namtable *namfirst,
*namlast;

for (nptr2 = namfirst; nptr2 != NULL; nptr2 =nptr2->next)
if (nptr2 == riptr)

break;

if (nptr2 == NULL)
printe('NAMFRMLIST: BUFFER TO DELETE NOT ON LIST~n");
return (-l);

if (namfirst == namlast) ( U ONLY NAM ON QUEUE *
namfirst = NULL;
namlast = NULL;

else if (nptr == namfirst) C /* HEAD OF QUEUE
namfirst = namfirst->next;
namfirst->prev = NULL;

else if (nptr -= namlast) (/* TAIL OF QUEUE
namlast = nptr->prev;
namlast->next = NULL;

else ( /* MIDDLE OF QUEUE
nptr->prev->next = nptr->next;
nptr->next->prev = nptr->prev;

free((char *) nptr);

return (0);
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- namlookup.c

Purpose - gets information about a globally advertised name from the

- local table of global names.

#include "header.h"

int namlookup(name, Isock, fsock, pid, bkupftm, msgs, nptrparm)
char *name;
int *lsock,

* fsock,
*pid,
*msgs,

*bkupftm;

struct namtable **nptrparm;

struct namtable *nptr;

extern struct namtable *namfirst;

for (nptr = namfirst; nptr !=NULL; nptr =nptr->next)
if (namc(C] !=OxOO)

if Cstrcmp~nptr->name, name) == 0)
break;

else
continue;

else if C(nptr->fsock ==-1) && nptr->lsock ==*lsock))

break;

if (nptr ==NULL)

return (-1);
else(

*lsock nptr->Isock;
*fsock =nptr->fsock;

,pid = nptr->pid;
*bkupftm = nptr->bkupftm;
*msgs = nptr->msgs;
*nptrparm = nptr;

return (0);
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- namtolist.c

- Purpose - adds an entry into the table (actually it is a linked list) of -

globally advertised names.

#include "header.h"

int namtolist(name, Isock, fsock, pid, bkupftm)
char *name;
int isock,

fsock,
pid,
bkupftm;

struct namtable *nptr;

extern struct namtable *namfirst,
*namlast;

errno EFAULT;

if (lsock < 0)
printe2("NAMTOLIST: ILLEGAL LSOCK - %dkn", Isock);
return (-l);

if ((fsock < 0) && (fsock != -1))
printe2("NAMTOLIST: ILLEGAL FSOCK = %d\n", fsock);
return (-1);

if ((fsock >-, 0) && (name(O] == OxO))
printe2("NAMTOLIST: NAME CANNOT BE NULL FOR FSOCK = %dn", fsock);
return (-I);

/*
- END OF ERRORS

*/

if (name(0j != OxOO)
for (nptr = namfirst; nptr != NULL; nptr = nptr->next)

if (strcmp(nptr->name, name) == 0)
errno = EWOULDBLOCK;

return (-I);

if ((fsock == -1) && (name[0) OxO))
for (nptr = namfirst; nptr != NULL; nptr = nptr->next)

if ((nptr->lsock == Isock) && (nptr->fsock == fsock))
strcpy(nptr->name, name);
nptr->pid = pid;

nptr->bkupftm = bkupftm;
return (0);

/*
* The socket to the intercept code has gone down after the connect but before
* the a-v(name) was successfully completed.
*/
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return (0);

" AT THIS POINT WE KNOW THAT EITHER: (1) fsock == -1 AND name =" (2)
" fsock >- 0 AND name '=IN EITHER CASE WE MUST ALLOCATE A TABLE ENTRY

if ((nptr - (struct namtable *) malloc(sizeof(struct namtable))) ~=NULL)
perror("NAMTOLIST: MALLOC");
return (-l);

bzero((char *) nptr, sizeof(*nptr));
strcpy(nptr->namo, name);
nptr->status - N';
nptr-)lsock -Isock;

nptr->fsock =fsock;

nptr->pid npid;
nptr->bkupftm -bkupftm;
nptr->msgs -0;
if (namlast -= NULL)

namfirst = nptr;
namlast = nptr;

Ielse(
namlast->next =nptr;
nptr-)prev = namlast;
namlast - nptr;

return (0);

- nline.c

- Purpose - simple utility routine to replace the first newline MOM)
- found with a NULL.

void nline(buf, len)
char *buf;
int len;

char *charptr;

for Ccharptr = buf; charptr < buf + len; ++charptr)

if (*charptr == OxOA)
*charptr = OxOO;
break;
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return;

pickbkup.c

- Purpose - called by the FTM when a backup system is required for some
- application which may in the future require restart.

#include "header.h"

int pickbkup()

struct namtable *nptr;

extern struct ftmtable *ftmptr;
extern int ftmsize,

ftmme;

extern struct namtable *namfirst;

int i,
min = 999999,
minptr = ftmme,
*current;

current = (int *) malloc(ftmsize * sizeof(*current));
for (i = 0; i < ftmsize; ++i)

current(i] = 0;

for (nptr = namfirst; nptr != NULL; nptr = nptr->next)
for (i = 0; i < ftmsize; ++i)

if ((ftmptr + i)->sock == nptr->fsock)
++current(i];

break;

for (i ftmme + 1; i < ftmsize; ++i)

if ((ftmptr + i)->sock < 0)
continue;

else if (current(i] < min)
min = current)l];

minptr = i;

for (i = 0; i < ftmme; ++i)
if ((ftmptr + i)->sock < 0)

continue;
else if (current i] < min)



294

min = current(i);
minptr = i

free((char *) current);
return (minptr);

- recvmsg.c

- Purpose -reads a message front a socket. Calls recvpkt to assure the
reassembly of multipi-- message packets.

#include "header.h"

int recvmsg(s, buf, buflen)

buflen;
char *buf;

int len,
errx,
msglen,
byte st ogo,
socknamelen;

char *bufnow,

this-sock;

struct msgbuf *mybuf;

struct sockaddr sockname;

if ((mybuf = (struct msgbuf *) malloc(MSGBUF MAX + PACKETSIZE)) ==NULL)

perror("SEND-MSG: MALLOC");
errno = EFAULT;
return (-1);

bzero (sockname, sizeof tsockname));
socknamelen = sizeof(sockname);
if (getsockname(s. &sockname, &socknamelen) < 0)

this sock = 'U';
~S~if (CockInmegen > 0) 6L (sockrtdme.sa-family AF INET))
this-sock = III;

else
this-sock = 'U';

bzero((char *) mybuf, MSGBUFMAX + PACKETSIZE);
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if ((en - recv-pkt(s, rnybuf->cmd, MSGBUFNMIN -MSGBUFHDR, 'H' ))<O0)
if (errno -= EWOULDBLOCK)

free((char *) rnybuf);
errno = EWOULDBLOCK;
return (-l);

Ielse if ((errno -- ECONNRESET) 11 (errno ==ENOTCONN))
free((char *~) mybuf);
errno - ENOTCONN;
return (-I);

else
errx = errno;
free((char *) mybuf);
errno - errx;
perror("RECV MSG: RECV BLK-l FAILED ON HEADER");
return (-l);

if (len -= 0)
frec((char *)mybuf),
errno = ENOTCONN;
return (-1);

#if MDEBUG
printf("DEBUG: RECVNSG: RECV %d HEADER BYTES ON SOCKET %d, CMD =sn"

len, s, mybuf->cmd);
#endif

sscanf(rnybuf->nlen, "Wd", &msglen);
if (buflen < MSGB!JF-MIN - MSGBUF-HDR + msglen)

printe("RECV -MSG: BUFFER TOO SHORft");

fr e ((char *) mybu f);
errno = EFAULT;
return (-1);

bufnow - rybuf->msg + 1;
bytes to go - msglen;

#if PACKETSIZE
if ((this-sock == 'I) && ((bytes to go % PACKETSIZE) 0))

bytes to go =bytes togo + PACKETSIZE - (bytes to go % PACKETSIZE);
#endif

if (bytes to go > 0)
if ((en = recv pkt(s, bufnow, bytes to go, 'B')) < 0)

if ((errno -= EWOULDBLOCK) II(errno -= ECONNRESET)
11 (errno ==ENOTCONN))
free((char *)mybuf);
errno = ENOTCONN;
return (-l);

else(
errx = errno;

free((char *) inybuf);
errno = errx;
perror("RECV NSG: RECVBLK-2 FAILED ON MSG");
return (-I);

else if (len ==0)

free((char *)mybuf);
errno = ENOTCONN;
return (-I);
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else
bytes to go -- len;

#if MDEBUG
printf

("DEBUG: RECV MSG: MESSAGE RECEIVED -%s %c %s %s %s %s %s %s %s\n",

mybu f->cmd,
mybuf->from,
mybuf->status,
mybu f->name to,

mybu f->name from,
niybu f->.%eqnum,
mybuf->er-.no,
mybuf->rnlen,
mybuf->msg);

#endif

bcopy(nrybuf->cmd, buf, MSGBUFMIN - MSGBUFHDR 4 msglen);
free(ichar *) mybuf);
return (MSGSUFMIN -MSGBUFIIDR + nitsgien);

recvpkt.c

Purpose -reads a message chunk from a socket. This may require the

- reassembly of multiple partial or full packets.

#Include "header.h"

int recvpkt(s, buf, buflen, type)

buflen;

char *buf,
type;

mnt len,
wait,
bytes to go;

char *bufnow;

extern struct ftm time ftmtime;

bufnow = buf;
bytes to go =buflen;
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FDZERO(&ftmtime.readfds temp);
while (bytes togo > 0)

wait 0;
LOOP

if ((len - recv(s, bufnow, bytestogo, 0)) > 0)

#if 14DEBUG
printf("DEBUG: RECV PKT: RECV %d MSG BYTES ON SOCKET %d\n", len, s);

#endif

bufnow += len;
bytestogo - len;
break;

else if (len = )

return (0);

else if (errno == EWOULDBLOCK)
if ((type == 'IH') && (bytestogo == buflen))

return (-i);
else if ((wait * MSG2 SLEEP) > (1000000 * MSG2_WAIT))

errno - ENOTCONN;

return (-I);

FD SET(s, &ftmtime.readfds temp);
bcopy((char *) &ftmtime.msgtimeperm,

(char ) &ftmtime.msgtimetemp, sizeof(struct timeval));

if (select(ftmtime.widthfds, &ftmtime.readfdstemp, NULL, NU*L,
&ftmtime.msgtime_temp) == 0)

++wait;

return (buflen);

- rundaemon.c

- Purpose - allows the FTMs to be started on remote systems through a

daemon process so that the FTMs may run in the background

- with no controlling terminal.

- Note - this routine was written by Ancelin Shah. It and shell script

- rkill are the only code in Appendix B not written by the author

of this dissertation.

/*

* Sessdetach - Detaches a daemon from a log-in session. Compile with a -DBSD

* switch on Berkeley UNIX systems.
*/
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#include <signal.h>
#include <stdio.h>
#include <sys/param.h>

#ifdef BSD
#include <sys/file.h>
#include <sys/ioctl.h>
#endif

void sessdetach()

int fd;

/* if launched by init (process 1) no need to detach */

if (getppid() -- 1)

goto out;

/* ignores terminal stop signals */

#ifdef SIGTTOU
signal(SIGTTOU, SIGIGN);

#endif

#ifdef SIGTTIN

signal(SIGTTIN, SIGIGN);
#endif

#ifdef SIGTSTP
signal(SIGTSTP, SIGIGN);

#endif

if (fork() !- 0)
exit (0);

/* ensure that daemon can't reacquire a new controlling terminal */

#ifdef BSD /* on Berkeley UNIX systems */

setpgrp(O, getpid(o); /* change process group leader */

if ((fd = open("dev/tty", O_RDWR)) >= 0) (
ioctl(fd, TIOCNOTTY, 0); /* lose controlling terminal */
close(fd);

#else /* on AT&T unix systems */

setpgrpo;

if (fork() != 0)
exit (0);

Sendif

out:
for (fd = 0; fd < NOFILE; fd++) /* close all open non-terminal files */

close(fd);
chdir("/"); /* change to root directory */

umask(0); /* clear any inherited filemode creation mask */

return;

* Rundaemon - Launches a daemon program after detaching it from the login
* session. Usage : rundaemon daemonprog (args] where daemonprog is complete
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* path name of daemon, rundaemon is program to make daemonprog a daemon, and
* "args" are 0 or more arguments to pass to daemon.
'I

main(argc, argv)
Int argc;
char *argv(];

if (argc < 2) (
fprintf(stderr, "usage:rundaemon commandn");
exit (-i);

if (access(argvll], 1) ==- -1)
perror(argv l]);
exit (-I);

sessdetach C);
if (execv(argv[l], &argv(l)) -a -1) /* start daemon program */

perror("execv:error :");

exit(-1);

exit(-l); /* THIS STATEMENT WILL NEVER BE REACHED */

- sendmsg.c

Purpose - sends a message to a socket. This usually requires the

disassembly header and data message portions.

#include "header.h"

int sendmsg(s, buf, buflen)

int s,
buflen;

char *buf;

int len,
msglen,
msglentot,
tempi,
temp2,
temp3,
temp4,
temp5,
socknamelen;
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char this-sock;

extern int intmsgs;

extern char ftm-ic;

struct msgbuf *mybuf;

struct narntable *nptr:

struct sockaddr sockname:

if ((mybuf = (struct msgbuf *) malloc(MSGBUF MAX + PACKETSIZE)) ==NULL)

perror("SENDMSG: MALLOC");
errno = EFAULT;

return (-I),

bzero (sockname, sizeof (socknarne));

socknarnelen -sizeof(sockname);
if (getsockname(s, &sockname, &socknamelen) < 0)

this sock ='U';
else if ((socknarnelen > 0) && (sockname.sa family ==AF-INET))

this-sock = III;
else

this-sock ' U';

if (buflen < MSGBUFMIN - MSGBUF -HDR)
printe3("SEND MSG: LEN = %d, LESS THAN MIN (HEADER) LENGTH % n"

buflen, MSGBUFMIN - MSGBUF HOR);
free((char *) mybuf);
errno = EFAULT;
return (-l);

if (buflen > MSGBUF-MAX - MSGBUF -HDR)
printe3('SEND -MSG: LEN = %d, MORE THAN MAX MESSAGE LENGTH =dn,

buflen, MSGBUFMAX - MSGBUF HDR);
free((char *) mybuf);
errno = EFAULT;
return (-1);

bzero((char *) mybuf, MSGBUFMAX + PACKETSIZE);
bcopy(buf, rnybuf->crnd, buflen);

if ((len = send(s, mybuf->cnd, MSGBUFMIN - MSGBUFHDR, 0)) < 0)
if ((errno == EPIPE) 11 (errno == ENOTCONN))

free((char *) mybuf);
errno = ENOTCONN;
return(-;

else(
perror("SEND -MSG: SEND-i FAILED ON HEADER");
free((char *) mybuf);
errno = EFAULT;
return (-I);

jelse if (len 0)
frec((char *)mybuf);
errno = ENOTCONN;
return (-1);

else if (len !- MSGBUF MIN - MSGBUF HDR)
printe3 ("SEND MSG: SENT HEADER = %d BYTES BUT TRANSMITTED =%cr',
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MSGBUF MIN -MSGBUFHOR, len);
free((char *) rnybuf);
errno = EFAULT;
return (-1);

#if MOEBUG
printf('DEBUG: SENDMSG: SEND %d BYTES TO SOCKET %d, CMD %s= "

len, s, mybuf->cmd);
#endif

sscanf(mybuf->m'.en, *%d", &msglentot);
if (buflen < MSGBUFMIN - MSGBUFHDR + msglentot)

printe (SENDMSG: BUFFER TOO SHORTW'n);
free((char *) mybuf);
errno -EFAULT;
return (-1);

if (msglentot > 0)
insglen - msglentot;

#if PACKETSIZE
if ((this sock == III) && ((msglen % PACKETSIZE) 0))

rnsglen = rsglen + PACKETSIZE - (msglen % PACKETSIZE);
#endif

if ((len =send(s, mybuf->rnsg + 1, msglen, 0)) -= msglen)

#if MDEBUG
printf("DEBUG: SEND-MSG: SEND %d BYTES TO SOCKET %d~n", len, s);

#endif

Ielse if (len >0)
printe3("SEND -MSG: SENT MESSAGE =%d BYTES BUT TRANSMITTED =dn"

msglen, len),

free((char *) mybuf);
errno = ENOTCONN;
return (-1);

else if (len == 0)
free((char *) rybuf);
errno = ENOTCONN;
return (-I);

else if ((errno == EPIPE) II(errno ==ENOTCONN))
free((char *) mybuf);
errno = ENOTCONN;
return (-I);

else
perror("SEND MSG: SEND-2");
printe3("SEiZDMSG: SEND-2: ATTEMPT TO SEND %d BYTES TO SOCKET %d\n",

rnsglen, s);
free((char *) mybuf);
errno = EFAULT;
return (-l);

"if .L~r4DEUG

printf
("DEBUG: SEND MSG: MESSAGE SENT =%s %c %s %s %s %s %s %s %s\n',
rnybu f->cmd,
mybuf ->f ran,
rybuf->status,
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rnybuf->narne to,
mybuf->name from,
mybu f->seqnum,
mybuf->errno,
rnybuf->mlen,
rnybuf->msg);

gendif

THE FOLLOWING CODE IS EXECUTED ONLY BY THE FTM ON UNIX SOCKETS -------

if ((ftm -ic == 'F') && (this-sock == 'U'))
temp. = s;
temp2 = -1;

if (ndmlookup C'", &templ, &temp2, &temp3,
&temp4, &temp5, &nptr) >= 0)

#if FDEBUG
printf("DEBUG: SENDMSG: UNIX MSG SENT TO SOCK =%d, NAME =sn"

s, nptr->name);
#endif

++npt r->msgs;
++int msgs;

else

#if FDEBUG

printf ("DEBUG: SEND-MSG: UNIX MSG SENT TO SOCK =%d, ADV FAILED\n', s);
#endif

-- - - - - - - - - - - - -- - - - - - - - - - - - -- - - - - - - - - - - -

free((char *) mybuf);
return (MSGBUF-WIN - SGSUF-HDR + msglentot);
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- setcap.c

- Purpose - utility program to capitalize a character string.

void setcap(ast.ing, len)

char *astring;
int len;

char *ptr;
Int diff;

ptr = astring;

diff = 'A' - 'a';

for (ptr = astring; ptr < astring + len; ++ptr)

if ((*ptr >= 'a') && (*ptr <= 'z'))
*ptr += diff;

return;

- strlcpy.c

- Purpose - utility program to copy a string under a maximum length

restriction.

- Use - strlcpy (sl,s2,len)

- This causes s2 to be copied to sl, but no more than len

- characters. This means that s2 may not be NULL terminated.

char *strlcpy(sl, s2, len)

char *sl,
*s2;

int len;

int i:

for (i = 0; i < len; ++i)
*(sl + i) = *(s2 + i);

if (*(s2 + i) == OxOO)

break;
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return (sl);

strnlen.c

Purpose - utility program to copy a string under a maximum length
restriction.

Use - strnlen (sl,len)
This returns the length of string sl, but stops searching for the -

terminating NULL after len characters have been examined.

int strnlen(sl, len)
char *sl;
int len;

char *slptr;

for (slptr = sl; slptr < sl + len; ++slptr)
if (*slptr == OxOO)

return (slptr -sl);

return (len);
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to.c

Purpose - called by application program to send a message to some other

- application somewhere in the system.

*include "header.h"

int to(name, msg, msglen)
char *name,

*msg;

int msglen;

int rc,
err,

oldmask,

tox() ;

oldmask = sigblock (sigmask (SIGUSR1));

rc =tox(name, msg, msglen);

err =errno;

sigsetmask (oldmask) ;

errno - err;

return (rc);

static mnt tox(name, msg, msglen)

char *narne,
* msg;

int msglen;

char capname(MAXNAMELEN + 1);

struct msgbuf *mptr,
*mptr2;

int minmsglen;

extern char intadvyet,

intmyname(MAXNAMELEN + 1);

extern int ftmsock,
intseqnum,

intpidme;

extern struct ftm time ftmtime;

if (strnlen(name, 1) ==0)

errno - EINVAL;

return (-1);

if ((strnlen(name, 2) ==1) &&(name(O] =) *)
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errno = EINVAL;
return (-I);

if ((intadvyet != 'Y') 11 (intpidrne != getpido))
printe ("TO: ADV NOT YET COMPLETED SUCCESSFLLLn");
errno -EFAULT;
return (-1);

if (ftmsock < 0)
errno =ENOTCONN;
return(-)

rninmsglen =msglen;

if (rinmsglen < 0)
rninmsglen =strlen(msg) + 1;

if (rinrsglen > MAXMSGLEN)
t~inmsglen = MAXMSGLEN;

bzero (capname, sizeof (capnarne));
strlcpy(capname, name, sizeof(capname) 1 );
setcap~capname, sizeof(capname) - 1);

if (C(mptr = (struct rnsgbuf *) malloc(MSGBUF MAX)) ==NULL)

11 ((mptr2 = (struct msgbuf *) malloc(MSG3UF MAX)) ==NULL))

perror(T0: MALLOC");
if (mptr != NULL)

free((char *) mptr);
errno = EFAULT;
return (-1);

bzero(Cchar Imptr, MSGBUF MAX);
bzero((char *)mptr2, MSGBUF MAX);

strcpy(mptr->cnd, "TO");
mptr->from = III;
sprintf(rnptr->status, 'Id", -1);
strcpy(rnptr->name to, capnarne);
strcpy(mptr->namefron, intrnyname);

sprintf(mptr->seqnum, "%d", intseqnum);
sprintf(mptr->errno, 'Id", 0);
sprintf(mptr->mlen, "Wd", minmsglen) ;
++intseqnum;
bcopy(msg, mptr->msg, rninrsgien);

if (send msg(ftmsock, mptr->cmd,
MSGBUF MIN - MSGI3UFHDR + minmsglen) < 0)

perror("T0: SEND MSG");
freeC(char *)mptr);
free((char *)mptr2);
errno = EFAULT;
return (-1);

#if IDEBUG

printf ("DEBUG: TO: TO MESSAGE SENT TO LOCAL FTM =%d~n", ftmsock);
printf ("DEBUG: TO: NOW WAITING FOR TOOKC.n");

#endif

*- LOOP UNTIL THE TOOK MESSAGE IS RECEIVED
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LOOP
getmsgs (-6);

if (findbuf("TOOK, "", rnptr2) < 0)
if (errno != EWOULDBLOCK)(

printe ("TO: BAD RETURN FROM FINDBUF-'.n");
free((char *)mptr);
freeC(char *)mptr2);
errno = EFAULT;
return (-I);

else;
else if (strcmp(mptr2->name from, capname) !- 0)
printe2("TO: NAME SENT WAS %s~n", capnamc) ;
printe2 ("TO: NAME IN TOOK IS %s~n", mptr2->name from);
free(Cchar *)mptr);
free((char *)mptr2);
errno = EFAULT;
return (-l);

else if (strcmp(mptr*->seanum, mptr2-'seanu) !- 0)
printe3 ("TO: TOOK SEQNUM MISMATCH %s %s\n", mptr->seqnum,

mptr2->seqnum);
free((char *)mptr);
free((char I rptr2);
errno = EFAULT;
return (-I);

else

#if IDEBUG
printf ("DEBUG: TO: TOOK MESSAGE RECEIVED\n')

#endif

free((char Imptr);
freeC(char I rptr2);
return (0);

if (findbuf('TONO', "", mptr2) < 0)
if (errno != EWOULDBLOCK)(

printe ("TO: BAD RETURN FROM FINDBUF-l\n");
free((char t)mptr);

free((char I rptr2);
errno = EFAULT;
return (-1);

Ielse;
else if (strcmp(rnptr2->name from, capname) !- 0)
printe2("TO: NAME SENT WAS %s\n", capname) ;
printe2 ("TO: NAME IN TONO IS %s\n", mptr2->name from);
free((char I rptr);
free((char Imptr2);
errno = EFAULT;
return (-I);

else if (strcmp(mptr->seqnum, mptr2->seqnun) != 0)
printe3C("TO: TONO SEONUM MISMATCH %s %s\n", mptr->seqnum,

mptr2->seqnum);
free((char *)mptr);
free((char *)mptr2);
errnc = EFAULT;

return (-1);
else(
sscanf(mptr2->errno, 'Id", &errno);
free(Cchar Imptr);
free((char Imptr2);
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#if IDEBUG
printf("DEBUG: TO: TONO MESSAGE RECEIVED\Vn");

#endif

rezurn (-1);

if (ftmsock < 0)
errno -ENOTCONN;
return (-l);

bcopy((char *) & ftnt ime. read fdspe r, (char ) ftrnt ireread fdstenp,
sizeof (struct Ed set));

bcopy((char *) &ftrntime.tirevaliperm, (char I&ftmtime.tirnevaltenp,
sizeof(struct timeval));

select (ftrtime.widthfds, &ftrntire. readfdstenp, NULL, NULL,
&ftrntire.tirevaltemp);



309

APENDIX C

PERFORMANCE AND VALIDATION TESTING PROGRAMS

FOR THE FTM PROTOTYPE

This appendix contains the source code for test programs which

validate and compile performance statistics on a running distributed FTM

system. The executables for these p--ograms are created during creation of

the customized FTM system (see Appendix B). The source code for each

test program includes a header block of comments describing the indivi-

dual test. These source code modules may also be used as simple exam-

ples of how to format calls which access the various FTM services, and

how to include these calls within an application program.
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- zadvclose.c

- Purpose - a small test program to time the delay in "adv" and "ftmclose"

- calls.

- Call - zadvclose floops)

- Defaults

- loops 100

#include "header.h"

#define DEF LOOPS 100

int ma~n(argc, argv)
int argc;
char '*argv;

char name(21];

int i,
loops = DEFLOOPS;

strLct Limeb timel,
time2;

double maxz - 0.0,
maxb - 0.0,
mina = 2000000000.0,
minb = 2000000000.0,
delay,
avg,
suma = 0.0,

sumb = 0.0,

sumsqrsa = 0.0,
sumsqrsb = 0.0,
stdev;

if (argc > 1)
sscanf(argv(l], "%d", &loops);

if (loops < 1)
loops = 1;

printf("ZADVCLOSE: NUMBER OF LOOPS = %d\n", loops);

for (i = 1; i <= loops; ++i)

ftime(&timel);
if (adv("MyName is_advclose") < 0)

printf("ZADVCLOSE: ADV BAD RETURN, ERRNO = %d, LOOP = %dfn", errno, i);

exit (-1);

fim (t imc 2)

delay = time2.time - timel.time

+ ((short) time2.millitm - (short) timel.millitm) / 1000.0;

if (delay > maxa)

maxa = delay;

if (delay < mina)
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mnina - delay;
surna +- delay;
sumsqrsa += delay * delay;

ftime (&tirnel);

if (ftmclose() < 0)
printf("ZADVCLOSE: FTMCLOSE BAD RETURN, ERRNO =%d, LOOP %d- "

errno, 1);
exit (-1);

ftime (&tirne2);
delay - tirne2.time - tirnel.time

+ ((short) time2.millitm -(short) timel.millitn) /1000.0;
if (delay > maxb)

mnaxb = delay;
if (delay < minb)

minb - delay;
sumb +- delay;
surnsqrsb += delay *delay;
if M( % 100) -= 0)

printf ("LOOPS = %d\n", i);

- calculate the statistics

avg =surna / loops;
if (loops > 1)

stdev -sqrt((sumsqrsa - (suma suma /loops)) /(loops -1));

else
stdev = 0.0;

printf("ADV: MAX = %6.3f, MIN = %6.3f, AVG = %6.3f, STDEV = 63~"
maxa, mina, avg. stdev);

avg = surnb / loops;
if (loops > 1)

stdev = sqrt((sumsqrsb - (sumb *sumb /loops)) / 'loops -1)

else
stdev = 0.0;

printf("CLS: MAX = %6.3f, MIN = %6.3f, JG =%6.3f, STDEV =63~"

maxb, minb, avg. stdev);
exit (0);
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- zdummy.c

- Purpose - advertises "dummy" and then reads (and discards) any incoming -

- messages. This allows the sending program (in this case "zto") -

- to generate timing statistics.

#include "header.h"

#define MAX-SIZE 4096

main()

char name(MAXNAMELEN + 1],
buf(MAXSIZE);

printf("ZDUMMY: ABOUT TO ADV\n");

if (adv("dummy") < 0) (
printf("ZDUMMY: ADV BAD RETURN!n");
return (-1);

prinf("ZDUMMY: ADVERTISE WAS SUCCESSFULn");

LOOP
strcpy(name, "*");
while (from(name, buf, MAXSIZE) >- 0)

strcpy(name, "*");
if (errno != EWOULDBLOCK)

exit (0);
pause ();
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- zflop.c

- Call - zflop (loops] In]

- Purpose - a small test program which "flops" around the n node FTM -

system loops times. It has a critical file (which contains the -

- initial start time and a count of restarts). After loops -

- restarts, the program reports the timing information (in the -

- final critical file) and then terminates. -

Note - since the clocks are distributed, accurate timing requires that -

the timing statistics be cumulated on a single system. This -

program assumes that it is being run on a n node distributed FTM -

system with no other connected applications so that it will -

"flop" around the system in a constant pattern. If n is 2 then -

this program will "flop" back and forth regardless of additional -

connected applications although they, along with other system -

workload, will bias the timing statistics. Timing statistics will -

be taken every other n flops, and divided by n. If not a multiple -

of n, then the parameter loops will be incremented to the next -

multiple.

Defaults:
loops 100
n 2

- Important - make sure that there are no pre-existing critical files -

- (#define CFILE) on any of the n nodes or this application will not -

- know that it is just starting out.

#include <stdio.h>
#include <errno.h>

#include <string.h>
#include <math.h>
#include <sys/types.h>
#include <sys/timeb.h>

#define DEF LOOPS 100

#define DEF N 2
#define CFILE "/tmp/auvschi/ftm/zflop.crt"

#define PFILE "/u/auvusersl/auvschi/ftm/zflop.lis"
#define DEBUG 0

int main(argc, argv)
int argc;
char **argv;

int i,
n = DEFN,
loops = DEFLOOPS;

struct tireb timeo,
timel,
time2;

double sum = 0.0,
sumsqrs = 0.0,
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avg,
stdev,
delay,
max =0.0,
min = 2000000000.0;

FILE *critical,
*pfile;

#if DEBUG
pfile =fopen(PFILE, " a");

#endif

if (argc > 1)
sscanf(argv[l], 'Ad", &loops);

if (argc > 2)
sscanf(argv[2], "%d", &n);

if ((oops % n) !=0)
loops += ((loops / n) + 1) *n - loops;

#if DEBUG
fprintf(pfile, "ZFLOP: NUMBER OF LOOPS = %c~n", loops);
fpriatf(pfile, "ZFLOP: NUMBER OF NODES = %A~n", n);
fflush (pfile);

fprintf(pfile, "ZFLOP: ABOUT TO ADV~n");
fflush (pfi le) ;

#endif

if (adv("Flop") < 0)(

#if DSBUG
.printf(pfile, "ZFLOP: ADV BAD RETURNWn");
f flush (pfi le);

#endif

exit (-1);

#if DEBUG

fprintf(pfile, 'ZFLOP: ABOUT TO OPEN FILEWn');
fflush(pfile);

#endif

if ((critical = fopen(CFILL, "r")) != NULL)

#if DEBUG

fprintf(pfile, "ZFLOP: HAVE OPENED CRITICAL FILE\.n");
fflush (pfile) ;

#endif

fread(&sum, 1, sizeof(sum), critical);
fread(&sumsqrs, 1, sizeof(sumsqrs), critical);
fread(&max, 1, sizeof(max), critical);
fread(&min, 1, sizeof(min), critical);
fscanf(critical, "%c± %hd %d %hd %d %d %d", &time0.time, &timeO.millitm,

Stimel.time, &timel.millitm, &loops, &n, &i);

fclose (critical);

#if DEBUG
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fprintf(pfile, "ZFLOP: CRITICAL FILE READ, LOOPS -%d, N - %d, I =dn"
loops, n, i);

fflush (pfile) ;
#endif

)else

#if DEBUG
fprintf(pfile, "ZFLOP: NO CRITICAL FILE - NOT YET RESTARTEDWn);
fflush(pfile) ;

#endif

ftime (&time0);

#if DEBUG
fprintf(pfile, "ZFLOP: TIMEO = %d %dn, time0.time, time0.Millitm);
fflush(pfile) ;

#endif

timel.time = tirneO.time;
rtimel.millitm = timeO.millltn;

i = 0;

if (Ci= 0) && MC % n) == 0)) ( /* EVEN LOOP - CALCULATF STATISTICS *
ftime (&time2);

#if DEBUG
fprintf(pfile, "ZFLOP: TIM4E2 =%d W%c', tlme2.time, tirne2.millitm);
fflush(pfile);

#endif

delay = (time2.time - tirnel.time)
+ ((short) time2.milliim -(short) tirnel.millitm) / 1000.0;

sum += delay;

delay /= n;
sumsqrs += pow(delay, 2.0) n;

#if DEBUG
fprintf(pfile, "ZFLOP: LOOP =%d, SUM =%f, sumsqrs =fn"

i, sum, sumsqrs);
fflush (pfile) ;

#2ndif

if (delay > max)
max = delay;

if (delay < mini)
min = delay;

tirnel.time = time2.time;
timel.millitm = time2.millitm;

#if DEBUG
fprintf(pfile, "ZFLOP: EVEN NON-ZERO LOOP, LOOPS =%d, N =%d, I =dn"

loops, n, i);

fflush(pfile) ;
#endif

if ((critical = fopen(CFILE, "w")) -= NULL)
ftmclose C);

#if DEBUG
fprintf(pfile, "ZFLOP: CRITICAL FILE OPEN ERROR\n");
fflush (pfile);

#endif
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exit(-l);/* FORGET IT ~

if (1 < loops)
fwrite(&sum, 1, sizeof(sum), critical);

fwrite(&sumsqrs, 1, sizeof(sumsqrs), critical);
fwrite(&max, 1, sizeof(max), critical);
fwrite(&min, 1, sizeof(min), critical);

fpriv f(critical, "%d %d %d %d %d %d %dcM", timeO.tine, tirneO.millitn,
timel.time, tirnel.millitm, loops, n, i);

fclose(critical);
if (copycf("flop", CFILE) < 0)

#if DEBUG
fprintf(pfile, 'ZFLOP: COPYCF FAILED FOR ERRNO =%cf\n", errno);
fclose (pfi le);

#endif

ftmclose();
exit (-1);

#if DEBUG
fprintf(pfile, "ZFLOP: CRITICAL FILE COPIED, LOOPS =%d, I =%d\n", loops,

fclose (pfile);
#endif

exit(-l); /* TERM4INATE PREMATURELY ~

HERE WE HAVE FLOPPED OUR LIMIT

#if DEBUG
fprintf(pfile, "ZFLOP: TIMES = %d %d %d %d\n",

time2.time, time2.millitm, timeO.time, timeO.millitm);
fflush (pfi le);

#endif

delay = (time2.time - timeO.time)
+ ((short) time2.millitm - (short) timeO.millitm) / 1000.0;

fprintf(critical, "%d FLOPS TOOK %7.3f SECONDS, AVERAGE = %5.3f\n",

i, delay, delay / i);
avg = sum / loops;

stdev = sqrt((sumsqrs - (sum * sum / loops)) / (loops - U));
fprintf (critical,

-MAX = %6.3f, MIN = %6.3f, AVG = %6.3f, STDEV = .3n,
max, min, avg, stdev);

fclose (critical);
ftmclosefl; /* NOW WE CAN SAFELY TERMINATE *

#if DEBUG

fprintf(pfile, "ZFLOP FINISHED, LOOPS = %d, I = %d~n", loops, iU;

fciose (pfi le);
#endif

exit (0)
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- zstatus.c

- Purpose - a small test program to Lime the delay in a "ftmstatus" call -

- Call - zstatus floops]

- Defaults

- loops 100

#include "header.h"

#d'-fine DEF LOOPS 100

int main(argc, arg%,)
int argc;
char **argv;

char name[MAXNAMELEN + 1],
currsys[MAXHOSTNAMELEN + 1],

bkupsysIMAXHOSTNAMELEN + 1];

int i,
errnox,

loops = DEF LOOPS,
mirror,
status;

struct timeb timel,
time2;

double max = 0.0,

min = 2000000000.0,

delay,
avg,
sum = 0.0,

sumsqrs = 0.0,

stdev;

if (argc > 1)

sscanf(argv(l], '%d", &loops);
if (loops < 1)

loops = 1;
printf("ZSTATUS: NUMBER OF LOOPS = %dn", loops);

printf("ZSTATUS: ABOUT TO ADfM");

if (adv("My_Nameis status") < 0)
printf("ZSTATUS: ADV BAD RETURNkn");

return (-!);

printf("ZSTATUS: ABOUT TO FTMSTATUS\n");

- gather the statistics
*/

ftime(&timel) ;
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for (i = 0; i < loops; ++i)
if (ftmstatus(2, &status, &mirror) < 0) {

errnox = errno;

printf("ZSTATUS: FTMSTATUS - BAD RETURN AFTER STARINn");
prlntf("ZSTATUS: FTMSTATUS - errno = %dkn", errnox);
prinf("ZSTATUS: FTMSTATUS - LOOP INDEX = %dn", i);

exit(-1);

ftime(&time2);
delay = time2.time - timel. ime

+ ((short) time2.millitm - (short) timel.millitm) / 1000.0;

if (delay > max)
max = delay;

if (delay < min)
min = delay;

sum += delay;

sumsqrs += delay * delay;

timel.tlme = time2.time;
timel.millitm = time2.millitm;

avg = sum / loops;
if (loops > 1)

stdev = sqrt((sumsqrs - (sum * sum / loops)) / (loops - 1));

else
stdev = 0.0;

printf("MAX = %6.3f, MIN = %6.3f, AVG = %6.3f, STDEV = %6.3f0v",
max, min, avg, stdev);

exit(0);

- ztest2.c

- Purpose - a small test program to demonstrate how to:

- (1) advertise a name
- (2) send some messages
- (3) receive some messages

- Note - this test program works along with ztest4.c, ztestc.c,

- and ztestd.c. The four programs must be running simultaneously. -

- Each rray be running on any system with a connected FTM.

#include <stdio.h>

#include <errno.h>

#include <string.h>

main ()
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char rnsg(1001,
name (21];

int

printf ("TEST2: ABOUT TO AD\M");

if (adv("boing") < 0)
printf ("TEST2: ADV BAD RETURN\n");
return (-1);

printf ("TEST2: ABOUT TO TOW");

while (to("eeps", "Hi ceps from boing", -1) < 0)
if (errno !=EWOULDBLOCK)(

printf ("TEST2: TO - BAD RETURNn");
return (-I);

else(
printf("TEST2: TO REJECTED - WILL TRY AGAIN IN 2 SECONDS\n");
sleep(2);

while (to("gleep", "Hi gleep from boing", -1) < 0)
if (errno !=EWOULDBLOCK)(

printf ('TEST2: TO - BAD RETURN\n");
return (-1);

else
printf("TEST2: TO REJECTED - WILL TRY AGAIN IN 2 SECONDS\n");
sleep (2);

while (to("groan", "Hi groan from boing", -1) < 0)

if (errno != EWOULDBLOCK)
printfC("TEST2: TO - BAD RETURN~n");
return (-1);

else(
printf("TEST2: TO REJECTED - WILL TRY AGAIN IN 2 SECONDS\n");
sleep (2);

printf("TEST2: ABOUT TO LOOP FOR FROft");

while (frorn("groan", msg, 100) < 0)
if (errno != EWOULDBLOCK)(

printf ("TEST2: FROM - BAD RETURN~n");
return (-I);

else
printf("TEST2: FROM REJECTED - WILL TRY AGAIN IN 2 SECONDS\n");
sleep (2);

printf ("TEST2: THE MESSAGE IS: %s\n", msg);

for (i = 1; i <= 2; ++i)

strcpy(name, "*");

while (from(name, msg, 100) < 0)
i.f (errno != EWOULDBLOCK)

printf("TEST2: FROM - BAD RETURN\n");
return (-1);

Ielse(
printf("TEST2: FROM REJECTED - WILL TRY AGAIN IN 2 SECONDS\n");
sleep(2) ;
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printf('TEST2: MESSAGE RECEIVED FROM: %sn" name);
printf("TEST2: THE MESSAGE IS: %s\n", msg);

return (0);

- ztest4.c

- Purpose - a small test program to demonstrate how to:

-(1) advertise a name

-(2) send some messages

-(3) receive some messages

- Note -this test program works along with ztest2.c, ztestc.c,

- and ztestd.c. The four programs must be running simultaneously.

- Each may be running on any system with a connected FTM.

#include****st*,*.h*rn*>r.tt* ***~***r**r*****~***

#include <stdio.h>

#include <string.h>

maino(

char msgf100],
name [21];

int

printf("TEST4: ABOUT TO AD\M");

if (adv("eeps") < 0)
printf("TEST4: ADV BAD RETURNn");
return (-l);

printf("TEST4: ABOUT TO TO'\n");

while (to("gleep", "Hi gleep from eeps", -1) < 0)
if (errno != EWOULDBLOCK)(

printf("TEST4: TO - BAD RETURNf~n");
return (-I);

Ielse(
printf("TEST4: TO REJECTED - WILL TRY AGAIN IN 2 SECONDS\n");

sleep (2);
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while (to("groan", "Hi groan from ceps", -1) < 0)
if (errno != EWOULDBLOCK) (

printf("TEST4: TO - BAD RETURN\n");
return (-I);

else (
printf("TEST4: TO REJECTED - WILL TRY AGAIN IN 2 SECONDS\n");
sleep (2);

while (to("boing", "Hi boing from eeps", -1) < 0)
if (errno != EWOULDBLOCK) (

printf("TEST4: TO - BAD RETURNAn");
return (-I);

else (
printf("TEST4: TO REJECTED - WILL TRY AGAIN IN 2 SECONDS\n");
sleep(2);

printf("TEST4: ABOUT TO LOOP FOR FROM~n");

while (from("boing", msg, 100) < 0)

if (errno != EWOULDBLOCK) (
printf("TEST4: FROM - BAD RETURNkn");
return (-1);

else (
printf("TEST4: FROM REJECTED - WILL TRY AGAIN IN 2 SECONDS\n");
sleep(2);

printf("TEST4: THE MESSAGE IS: %s\n", msg);

for (i = 1; i <= 2; ++i)

strcpy(name, "*");
while (from(name, msg, 100) < 0)

if (errno != EWOULDBLOCK) (
printf("TEST4: FROM - BAD RETURN\n");
return (-I);

I else (
printf("TEST4: FROM REJECTED - WILL TRY AGAIN IN 2 SECONDS\n");
sleep(2);

printf("TEST4: MESSAGE RECEIVED FROM: %s\n", name);
printf("TEST4: THE MESSAGE IS: %s\n", msg);

return (0);
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- Ztestc.c

- Purpose - a small test program to demonstrate how to:

- (1) advertise a name

- (2) send some messages

- (3) receive some messages

- Note - this test program works along with ztest2.c, ztest4.c,

- and ztestd.c. The four programs must be running simultaneously.

- Each may be running on any system with a connected FTM.

#include <stdio.h>
#include <errno.h>

#include <string.h>

main()

char msg100],
name[21);

int i;

printf("TESTc: ABOUT TO ADft");

if (adv("gleep") < 0) (
printf("TESTc: ADV BAD RETURNAn");
return (-I);

printf("TESTc: ABOUT TO TO\n");

while (to("groan", "Hi groan from gleep", -1) < 0)
if (errno != EWOULDBLOCK) (

printf("TESTc: TO - BAD RETURNAn");
return (-I);

} else (
printf("TESTc: TO REJECTED - WILL TRY AGAIN IN 2 SECONDS\n");
sleep(2);

while (to("boing", "Hi boing from gleep", -1) < 0)

if (errno != EWOULDBLOCK) (

printf("TESTc: TO - BAD RETURN\n");
return (-I);

else (
printf("TESTc: TO REJECTED - WILL TRY AGAIN IN 2 SECONDS\n");
sleep (2);

while (to("eeps", "Hi eeps from gleep", -1) < 0)
if (e o -.:- EWOULDBLOCK)

printf("TESTc: TO - BAD RETURNkn");
return (-1);

I else (
printf("TESTc: TO REJECTED - WILL TRY AGAIN IN 2 SECONDS\n");
sleep(2);
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printf("TESTc: ABOUT TO LOOP FOR FROft");

while (from("eeps", msg, 100) < 0)

if (errno != EWOULDBLOCK) (
printf("TESTc: FROM - BAD RETURNn");
return (-1);

else (
printf("TESTc: FROM REJECTED - WILL TRY AGAIN IN 2 SECONDS\n");

sleep(2);

printf("TESTc: THE MESSAGE IS: %s\n", msg);

for (i = 1; i <= 2; ++i)

strcpy(name, "*");
while (from(name, msg, 100) < 0)

if (errno != EWOULDBLOCK) (
printf("TESTc: FROM - BAD RETURNAn");
return (-l);

} else (
printf("TESTc: FROM REJECTED - WILL TRY AGAIN IN 2 SECONDS\n");

sleep(2);

printf("TESTc: MESSAGE RECEIVED FROM: %skn", name);

printf("TESTc: THE MESSAGE IS: %sn", msg);

return (0);

- ztestd.c

- Purpose - a small test )rogram to demonstrate how to:

- (1) advertise a name
- (2) send some messages
- (3) receive some messages

- Note - this test program works along with ztest2.c, ztest4.c,

and ztestc.c. The four programs must be running simultaneously.

Each may be running on any system with a connected FTM.

#include <stdio.h>

#include <errno.h>

#include <string.h>

main()
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char msgl1OO,
name(21];

int i;

printf("TESTd: ABOUT TO ADVn");

if (adv("groan") < 0) (
printf("TESTd: ADV BAD RETURNkn");
return (-i);

printf("TESTd: ABOUT TO TO\n");

while (to("boing", "Hi boing from groan", -1) < 0)

if (errno !- EWOULDBLOCK) (
printf("TESTd: TO - BAD RETURNkn");

return (-I);
else (
printf("TESTd: TO REJECTED - WILL TRY AGAIN IN 2 SECONDS\n");
sleep(2);

while (to("eeps", "Hi ceps from groan", -1) < 0)
if (errno != EWOULDBLOCK) (

printf("TESTd: TO - BAD RETURN\n");

return (-1);
else (

printf("TESTd: TO REJECTED - WILL TRY AGAIN IN 2 SECONDS\n");
sleep(2);

while (to("gleep", "Hi gleep from groan", -1) < 0)

if (errno != EWOULDBLOCK) (

printf("TESTd: TO - BAD RETURNn");
return (-I);

else (

printf("TESTd: TO REJECTED - WILL TRY AGAIN IN 2 SECONDS\n");
sleep(2);

printf("TESTd: ABOUT TO LOOP FOR FROM~n");

while (from("gleep", msg, 100) < 0)
if (errno != EWOULDBLOCK) (

printf("TESTd: FROM - BAD RETURNkn");

return (-l);
else {
printf("TESTd: FROM REJECTED - WILL TRY AGAIN IN 2 SECONDS\n");

sleep(2);

printf("TESTd: THE MESSAGE IS: %skn", msg);

for (i = 1; i <= 2; ++i)
strcDy(name, "*"):

while (from(name, msg, 100) < 0)

if (errno != EWOULDBLOCK) (
printf("TESTd: FROM - BAD RETURNfn");
return (-I);

else (
printf("TESTd: FROM REJECTED - WILL TRY AGAIN IN 2 SECONDS\n");
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sleep (2)

printf('TESTd: MESSAGE RECEIVED FROM: %s\.n", name);
printfC"TESTd: THE MESSAGE IS: %s/n", msg);

return (0);

- zto.c

- Purpose - a small test program to time the delay in a "to" call

- Call - zto (loops) (message size]

- Defaults
-loops 100
-message size 400

- Note -requires program "zdummy" to serve as message target.

#include "header.h"

#define MAX SIZE 4096

#define DEF SIZE 400

#define DEE' LOOPS 100

int main(argc, argv)
int argc;
char **argv;

char msg(MAXSIZE),
name (21];

int 1,

errnox,
size =DEE' SIZE,

loops =DEFJ OOPS;

struct timeb timel,
time2;

double max = 0.0,
min = 2000000000.0,
delay,
avg,
sum = 0.0,
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sumsqrs - 0.0,
stdcv;

if (argc > 1)
sscanf(argv~lL, "Wd", &loops);

if (loops < 1)
loops - 1;

printf("ZTO: NUMBER OF LOOPS - %M", loops);
if (argc > 2)

sscanf(argv[2,, "Wd", &size);
if (size < 0)

size - 0;
printf("ZTO: MESSAGE SIZE - %d\n", size);
if (size > MAXSIZE)(

printf ("MESSAGE SIZE TOO BIG - LIMIT IS %d\n', MAX-SIZE);
exit (-1);

if (size > 0)
msg(0] IV
if (size > 2)

msg[size - 21 - II

for Ci = 1; 1 < size - 2; ++1)
msgii - 1I

msg(size - 1] - 0X00;

printf("ZTO: ABOUT TO ADVAn");

if Cadv("My Name is to") < 0)

printf("ZTO: ADV BAD RETURNn");
return (-1);

printf("ZTO: ABOUT TO TOWn');

- make sure that zdummy is active

if (to("dummy", msg, size) < 0)

if (errno != EWOULDBLOCK) (
printf("ZTO: TO - BAD RETURN~n");
exit (-1);

else
printf("ZTO: TO - zdummy NOT ACTIVEWn");
exit (-1);

else
printf("ZTO: INITIAL TO SUCCESSFUL\n");

g ather the statistics

ftime (&timel) ;
for (i -0; i < loops; ++i)

if (to("dummy", msg, size) < 0)

errnox = errno;
printf("ZTO: TO -BAD RETURN AFTER STARTIM");
printf("ZTO: TO -errno = %d'.", errnox);
printf("ZTO: TO -LOOP INDEX = %d~n", i);
exit (-1);

ftime (&time2);
delay = time2.time -timel.time

+ ((short) time2.millitm - (short) timel.millitm) /1000.0;
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if (delay > max)

max = delay;
if (delay < min)

min - delay;
sum +- delay;

sumsqrs +- delay delay;
timel.time - time2.time;
timel.millitm - time2.millitm;)I

avg - sum / loops;
if (loops > 1)

stdev - sqrt((sumsqrs - (sum * sum / loops)) / (loops - ));
else

stdev - 0.0;
printf("MAX - %6.3f, MIN - %6.3f, AVG - %6.3f, STDEV - %6.3fNn",

max, min, avg, stdev);

exit(0);

- zwhere.c

- Purpose - a small test program to time the delay in a "ftmwhere" call -

- Call - zwhere (loops]

- Defaults
- loops 100

- Note - requires program "zdummy" to serve as locator target.

#include "header.h"

#define DEF LOOPS 100

int main(argc, argv)
int argc;

char **argv;

char nametMAXNAMELEN + 1],
currsys[MAXHOSTNAMELEN + 1],
bkupsys[MAXHOSTNAMELEN + 1];

int i,
errnox,

loops = DEFLOOPS;

struct timeb timel,
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t ime2;

double max =0.0,
min = 2000000000.0,
delay,
avg.
sum =0.0,
sumsqrs = 0.0,
stdev;

if (argc > 1)
sscanf(argv(l], "%d", &loops);

if (loops < 1)
loops - 1;

printf ('ZWHERE: NUMBER OF LOOPS .%d\n", loops);

printf 'ZWHERE: ABOUT TO AD\n");

if (adv("My Name-is where") < 0)
printf("ZWHERE: ADV BAD RETURN~n");
return (-1);

printf('ZWHERE: ABOUT TO FTMWHERF.\n');

- make sure that zdunfmy is active

if (ftmwhere("dummy", currsys, bkupsys) < 0)

printf ("ZWHERE: FTMWHERE - BAD RETUR~'.");
exit (-1);

else if (currsyslOj -= OxOO)
printf("'ZWHERE: FTMWHERE - zdummy NOT ACTIVE\n");
exit (-1);

else
printf('ZWHERE: INITIAL WHERE SUCCESSFU~n");

sleep(l);

- gather the statistics

ftime (&timel) ;
for (i = 0; i < loops; ++i)

if ((ftmwhere("dummy", currsys, bkupsys) < 0) 11 (currsys(0) 000xO))
errnox =0;
if (currsyslO] == OxOO)

errnox = errno;
printf ("ZWIERE: FTMWIIERE - BAD RETURN AFTER STAR']M");
printf (ZWHERE: FTMWHERE - errno = %d\n", errnox) ;
printf("ZWHERE: FTMWHERE - LOOP INDEX - %d\n", i);
exit (-1);

frtime (&timie2);
delay = time2.time - ti .'1.time

+ ((short) time2.millitm - (short) timel.millitm) /1000.0;

if (delay > max)
max d elay;

if (delay < min)
min - delay;

sum += delay;

sumsqrs += delay * delay;
timel.time = time2.time;
timel.millitm -. time2.millitm;
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avg = sum / loops;
if (loops > 1)

stdev = sqrt((sumsqrs - (sum * sum / loops)) / (loops - ));

else
stdev = 0.0;

printf("MAX = %6.3f, MIN - %6.3f, AVG - %6.3f, STDEV = %6.3f.%

max, min, avg, stdev);

exit (0);

zzdummy-in.c

Purpose - receives messages over a socket connected to program zzto in.

NOTE - this program supports INET sockets directly. It does not require

support from an FTM system.

#include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>
#include <netinet/in.h>

#define FTMPORT 9738
#define MAX-SIZE 4096

int main()

struct sockaddr in server,
client;

int sl,
s2,
len,
rc,
size,

bytesso far;

char buf(MAXSIZE];

it ((sl = socket(AFINET, SOCK STREAM, 0)) < 0)
perror("ZZDUMMY IN: SOCKET");

exit(-1);

bzero((char *) &server, sizeof(server));

server.sin pcrt = FTMPORT;
if (bind(sl, &server, sizeof(server)) < 0) (
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perror('ZZDUMMYIN: BIND");
printf ("ZZDUMMYIN: BIND ADDR - %d \n", FTMPORT);
exit(-1);

if (listen(sl, 1) < 0)
perror("ZZDUMMYIN: LISTEN");
exit. t(-1);

if (Ws = accept(sl, &client, &len)) < 0)
perror("ZZDUMMYIN: ACCEPT");
exit(-1);

if (close(sl) < 0)
perrorC"ZZDUMMY-IN: CLOSE LISTENER SOCKEIMn");
exit (-1);

if ((rc = recv(s2, &size, sizeof(size), 0)) !=sizeof(size))
perror("ZZDUMMYIN: INITIAL RECV);
exit (-1);

else if Crc == 0)
printf(C'ZZDUMMY-IN: IR: RC = 0 => UNIX SOCKET IS DOWAn);
exit (-1);

if (,send(s2, "Z", 1) <= 0)
perror("ZZDUMMYIN: INITIAL SEND");
exit (-1);

if (size > MAXSIZE)
printf("ZZDUMMYIN: SIZE = %d LARGER THAN MAXSIZE =%cf~n",

size, MAX-SIZE);
exit (-1);

bzero(buf, size);
bytes so far = 0;
for (;;) (

if (Crc =recv(s2, buf, size, 0)) < 0)

perror("ZZDUMMY IN: SUBSEQUENT RECV);
exit-I);

Ielse if Crc == 0)
printf("ZZDUMMY IN: SR: RC = 0 => INET SOCKET IS DOWft');
exit C-I);

bytes-so far += rc;
if ((bytes so far / size) >= 1)

if (se'nd(s2, -", 1) <= 0)
perror('ZZDUMMY IN: SUBSEQUENT SEND");
exit (-1);

bytes so far %= size;
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- zzdumyun.c

- Purpose - receives messages over a socket connected to program zzto un.

- NOTE - this program supports UNIX sockets diLectly. It does not require
- support from an FTM system.

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket .h>
#include <sys/un.h>

#define FTMFAM "/tmp/auvscni/zzmysocket.sck"
#define MAXSIZE 4096

int main()

struct sockaddr-un server,
client;

int si,
s2,
rc,
len,
size,
bytes so far;

char buf(MAXSIZE];

if ((si = socketCAF -UNIX, SOCK STREAM, 0)) < 0)
perror("ZZDUMMY UN: SOCKET");
exit (-1)1

bzero((char *) &server, sizeof(server));
server.sun-family = AFUNIX;
strcpy~server.sun path, FTMFAM);
unlink CFTMFAM);
if (bind(sl, &server, strlen(FTMFAM) + 2) < 0)

perror("ZZDUMMYUN: BIND");
printf ("ZZDUMMYUN: BIND ADDR = %s \n", FTMFAM);
exit (-1);

if (listen(sl, 1) < 0)(
perror("ZZDUMMv-UN: LISTEN");
exit (-1);

if ((s2 - accept Csl, &client, &ien)) < 0)
perror("ZZDUMMYUN: ACCEPT");
exit (-1);

if (close(sl) < 0)
perror("ZZDUMMY-UN: CLOSE LISTENER SOCKET");
exit (-1);

if ((rc = recv(s2, &size, sizeof(size), 0)) !=sizeof(size))
perror("ZZDUMMYUN: INITIAL RECV");
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exit (-I)
else if (rc == 0)
printf("ZZDUMMYUN: IR: RC = 0 => UNIX SOCKET IS DOWNn");
exit (-i);

if (send(s2, "Z", 1) <= 0) (
perror('ZZDUMMYUN: INITIAL SEND");
exit (-1) ;

if (size > MAXSIZE)
printf("ZZDUMMYUN: SIZE = %d LARGER THAN MAX-SIZE =%d\n",

size, MAXSIZE);
exit (-i);

bzero(buf, size);
bytessofar = 0;
for (;;) (

if ((rc = recv(s2, buf, size, 0)) < 0)
perror("ZZDUMMY_UIN: SUBSEQUENT RECV");
exit (-I);

I else if (rc == 0)
printf("ZZDUMMYUN: SR: RC = 0 => UNIX SOCKET IS DOWN'n");
exit (-I);

bytes-so far += rc;
if ((bytes so far / size) >= 1)

if (send(s2, "Z", 1) <= 0) (
perror("ZZDUMMYIN: SUBSEQUENT SEND");
exit (-i);

bytesso far %= size;

zzto in.c

Purpose - a small test program to time the delay in a "send" call

Call - zzto-in remotehost (loops] (messagesize)

Defaults
loops 100

message size 400

Note - requires program "zzdummyin" to serve as message target. This

program supports INET sockets directly. It does not require -

support from an FTM system.
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#include <stdio.h>

#include <sys/types.h>
#include .<sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <math.h>
#include <sys/timeb.h>

#define FTMPORT 9738
#define MAXSIZE 4096
#define DEFSIZE 400
#define DEFLOOPS 100

int rain(argc, argv)
int argc;
char **argv;

char msg(MAX -SIZE),
onebuf(1];

int
sl,
size = DEF SIZE,
loops = DEF LOOPS;

struct sockaddr in server;

struct hostent *hp;

struct timeb timel,
time2;

double max = 0.0,

min = 2000000000.0,
delay,
avg.

sum = 0.0,
sumsqrs = 0.0,
stdev;

if (argc <z 2)(
print f (ZZTOIN: NO REMOTE HOST SPECIFIED\n");
exit (-1);

if (argc > 2)
sscanf(argv(2], "%d", &loops);

if (loops < 1)
loops = 1;

print f("ZZTO-IN: NUMBER OF LOOPS =%doM, loops);

if (argc > 3)
sscanf(argv[3], "%d", &size);

if (size < 01,
size = 0;

print f("ZZTOIN: MESSAGE SIZE = %d\,n", size);

if (size > MAXSIZE)

printf ("MESSAGE SIZE TOO BIG - LIMIT IS %d\n", MAX-SIZE);
exit (-1);
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if (size > 0)
rnsg(OI- YI
if (size > 2)

msgisize - 2] = II

for (i 1; i < size - 2; 4+0)
msg(i] =XI

msg(size -1) = OxCO;

if ((hp = gethostbyname(argvl)) ==NULL)

perror("ZZTOIN: GETHOSTBYNAME");
exit (-1);

else if (hp->h length != 4)
printf('ZZ'.) IN: ILLEGAL NET ADDR LENGTH %d \n,

hp->)-length);
exit (-1);

Ielse if (hp->haddrtype !=AF -INET)
printf("ZZT0_IN: ILLEGAL ADDRTYPE =%d \n", hp->h addrtype)
exit (-1);

if ((sl = socket(AF INET, SOCK STREAM, 0)) < 0)
perror("ZZTO IN: SOCKET");
exit (-1);

bzero((char *) &server, sizeof(server));
server.sin family PAFINET;

server.sin port = FTMPORT;
bcopy(hp->haddr, (char *) &server.sin -addr, 4);
if (connect(sl, &server, sizeof(server)) < 0)

perror("ZZTOIN: CONNECT");
exit (-1);

- make sure that zzdummy-in is active

if (sendisi, &size, sizeof(size), 0) != sizeof(size))
perror("ZZTOIN: INITIAL SEND");
printf ("ZZTO-IN: ZZDUMMY-IN MAY NOT BE ACTIVEn");
exit (-1);

else
printf ("ZZTOIN: INITIAL SEND SUCCESSFUL\n");

if (recv(sl, onebuf, 1, 0) !=1)
printf("ZZTO-IN: COULD NOT RECEIVE INITIAL ONE BYTE\n");
exit (-1);

- gather the statistics

ftime(&timel);
for Ci = 0; i < loops; ++i)

if (send(sl, msg, size, 0) != size)
perror("ZZTO -IN: SUBSEQUENT SEND");

printf("ZZTO IN: ZZDUMMY-IN MAY NOT BE ACTIVEWn);
exit (-1);

oncbu-. 1 ','*'~~ .,, 01!=1

print f("ZZTO IN: COULD NOT RECEIVE SUBSEQUENT ONE BYTE\n");
exit (-1);

ftime(&time2) ;
delay = time2.time - timel.time

+ ((short) time2.millitm - (short) timel.millitm) / 1000.0;
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if (delay > max)
max = delay;

if (delay < min)
min = delay;

sum += delay;
sumsqrs += delay * delay;
timel.time = time2.time;
timel.millitm = time2.millitm;

avg = sum / loops;
if (loops > 1)

stdev = sqrt((sumsqrs - (sum * sum / loops)) / (loops - ));
else

stdev - 0.0;
printf("MAX = %6.3f, MIN = %6.3f, AVG = %6.3f, STDEV = %6.3fkn",

max, min, avg, stdev);
exit(0);

- zzto un.c

- Purpose - a small test program to time the delay in a "send" call

- Call - zzto-un [loops] (messagesize]

- Defaults
- loops 100
- messagesize 400

- Note - requires program "zzdummy un" to serve as message target. This -

- program supports UNIX sockets directly. It does not require -

- support from an FTM system.

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <math.h>
#include <sys/timeb.h>

#define FTMFAM "/tmp/auvschi/zzmysocket.sck"
define MAX STZF 4096

#define DEF SIZE 400
#define DEF LOOPS 100

int main(argc, argv)
int argc;
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char **argv;

char msg[MAXSIZE],
onebuf[l];

si,
size - DEFSIZE,
loops - DEFLOOPS;

srtruct sockaddr-un server;

struct timeb timel,
time2;

double max = 0.0,
min - 2000000000.0,
delay,
avg,
sum = 0.0,
sumsqrs = 0.0,
stdev;

if (argc > 1)
sscanf(argvlli, 'd, &loops);

if (loops < 1)
loops = 1;

printf ("ZZTO UN: NUMBER OF LOOPS =%d~'n", loops);

if (argc > 2)
sscanf(argv[2), "Wd", &size);

if (size < 0)
size = 0;

printfC"ZZTOUN: MESSAGE SIZE = %d\.n", size);

if (size > MAXSIZE)(

printf ("MESSAGE SIZE TOO BIG - LIMIT IS %o~n", MAX-SIZE);
exit (-1);

if (size > 0)
msg(0) =IV
if (size > 2)

msg(size - 2) - II

for (i - 1; i < size - 2; ++i)
msgli] =XI

msg[size -1] = OxOO;

if ((sl = socket (AF -UNIX, SOCK -STREAM, 0)) < 0)
perror("ZZTO UN: SOCKET");
exit (-1);

bzero((char *) &server, sizeof(server));
server.sun-family = AFUNIX;
strcpy(server.sun path. FTMFAM);
if (connect(sl, &server, sizeof(server)) < 0)(

perror("ZZTO UN: CONNECT");
exit (-1);

- make sure that zzdummyun is active

__ _ _ _
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if (send~sl, &size, sizeof(size), 0) !~sizeof(size))
perror("ZZTO -UN: INITIAL SEND");
printf('ZZTO UN: ZZDUMMY-UN MAY NOT BE ACTIVEWn");
exit (-1);-

else
printf("ZZTO UN: INITIAL SEND SUCCESSFUL\n");

if (recv(sl, onebuf, 1, 0) !- 1) (
printf("ZZTO UN: COULD NOT RECEIVE INITIAL ONE BYTE\n");

exit (-1);

- gather the statistics

ftime(&timel) ;
for (i - 0; 1 < loops; ++i)

if (send(sl, msg, size, 0) !- size)
perror("ZZTO UN: SUBSEQUENT SEND");

printf("ZZTO UN: ZZDUMMYUN MAY NOT BE ACTIVE\.n");
exit (-1):

if (recv(sl, onebuf, 1, 0) !-1)
printf("ZZTO UN: COULD NOT RECEIVE SUBSEQUENT ONE BYTE\n");

exit (-1);

ftimo (&time2);

delay = time2.time - timel.time
+ ((short) time2.millitm - (short) timel.milliti) /1000.0;

if (delay > max)
max =delay;

if (delay < min)
minm delay;

sum +- delay;
sumsqrs += delay * delay;
timel.time - time2.time;
timel.millitm = time2.millitm;

avg = sum / loops;
if (loops > 1)

stdev = sqrt((sumsqrs - (sum * sum /loops)) /(loops -1));J

else
stdev = 0.0;

printf("MAX = %6.3f, MIN = %6.3f, AVG %6.3f, STDEV= %6.3f\n",
max, min, avg, stdev);

exit (0)


